Apport de la mesure ambulatoire de pression artérielle des 24 heures, de l’électrocardiogramme et de l’échographie cardiaque dans le dépistage du syndrome d’apnées du sommeil dans une population de patients hypertendus.

Présentée et soutenue publiquement le 19 octobre 2017 à 18 heures au Pôle Formation

Par Aurore GARY

JURY

Président :
 Madame le Professeur Christelle MONACA

Assesseurs :
 Monsieur le Professeur David MONTAIGNE
 Monsieur le Docteur Jean-Louis EDME
 Madame le Docteur Stéphanie FRY

Directeur de Thèse :
 Monsieur le Docteur Pascal DELSART
Avertissement

La Faculté n'entend donner aucune approbation aux opinions émises dans les thèses : celles-ci sont propres à leurs auteurs.
Liste des abréviations

AOMI Artérite oblitérante des membres inférieurs
ARA2 Anti-récepteur de l'angiotensine 2
AVC Accident vasculaire cérébral
BBD Bloc de branche droit
BBG Bloc de branche gauche
Bpm Battement par minute
DTDVG Diamètre télé-diastolique du ventricule gauche
DVD Diamètre du ventricule droit
ETT Echographie cardiaque trans-thoracique
FA Fibrillation atriale
FEVG Fraction d'éjection du ventricule gauche
HDLc High density lipoprotein cholesterol
HTA Hypertension artérielle
HVG Hypertrophie ventriculaire gauche
IC Intervalle de confiance
IEC Inhibiteur de l'enzyme de conversion
IMC Indice de masse corporelle
IAH Index apnées-hypopnées
LDLc Low density liproprotein cholesterol
MAPA Mesure ambulatoire de la pression artérielle
MVG Masse ventriculaire gauche
OAM Orthèse d'avancée mandibulaire
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>ORL</td>
<td>Oto-rhino-laryngologie</td>
</tr>
<tr>
<td>PA</td>
<td>Pression artérielle</td>
</tr>
<tr>
<td>PP</td>
<td>Paroi postérieure</td>
</tr>
<tr>
<td>PPC</td>
<td>Pression positive continue</td>
</tr>
<tr>
<td>SAHOS</td>
<td>Syndrome d'apnées-hypopnées obstructives du sommeil</td>
</tr>
<tr>
<td>Se</td>
<td>Sensibilité</td>
</tr>
<tr>
<td>Sp</td>
<td>Spécificité</td>
</tr>
<tr>
<td>SIV</td>
<td>Septum interventriculaire</td>
</tr>
<tr>
<td>SpO2</td>
<td>Saturation pulsée en oxygène</td>
</tr>
<tr>
<td>TAPSE</td>
<td>Tricuspid annular plane systolic excursion</td>
</tr>
<tr>
<td>VAS</td>
<td>Voies aériennes supérieures</td>
</tr>
<tr>
<td>VD</td>
<td>Ventricule droit</td>
</tr>
</tbody>
</table>
Table des matières

Résumé .. 1

Introduction .. 3

 1. Le syndrome d’apnées-hypopnées du sommeil .. 3
 A. Définitions des événements respiratoires obstructifs 3
 B. Définition du SAHOS .. 4
 C. Physiopathologie ... 5
 D. Epidémiologie et facteurs favorisants ... 6
 E. Symptomatologie .. 6

 F. Co-morbidités associées au SAHOS ... 7
 1. L’hypertension artérielle ... 7
 2. La maladie coronaire ... 8
 3. L’anévrisme aortique .. 8
 4. La dissection aortique ... 9
 5. L’insuffisance cardiaque .. 9
 6. L’accident vasculaire cérébral .. 9
 7. Les troubles du rythme ... 10
 8. L’obésité .. 10
 9. Le diabète .. 11
 10. La dyslipidémie ... 11
 11. La somnolence diurne .. 11

 G. SAHOS et paramètres échocardiographiques .. 11

 H. Outils de dépistage du SAHOS ... 12
 1. Le score d’Epworth ... 12
 2. Le score de Berlin .. 13
 3. Le STOP BANG .. 13
 4. Méta-analyse .. 13

 I. Diagnostic .. 14

 J. Principes thérapeutiques .. 15
 1. Pression positive continue ... 15
 2. TraITEMENT médICAL ... 16
 3. Traitement chirurgical ORL .. 17
 4. Recommandations de la Haute Autorité de Santé 17
II. Objectif .. 18

Méthode .. 19

I. Population .. 19

II. Données recueillies .. 20
 A. Données cliniques .. 20
 B. Données biologiques ... 22
 C. Traitement médical en cours .. 23
 D. Scores validés ... 23
 E. Données de l’électrocardiogramme .. 23
 F. Données de l’échographie cardiaque trans-thoracique 24
 G. Données de la polygraphie ... 25

III. Analyse statistique ... 25

Résultats ... 28

I. Analyse bivariée .. 28
 A. Caractéristiques générales de la population ... 28
 B. Données de la symptomatologie .. 30
 C. Données des traitements médicamenteux ... 31
 D. Données biologiques ... 32
 E. Données des scores validés pour le dépistage du SAHOS 32
 F. Données de l’électrocardiogramme et de l’échocardiographie 33
 G. Données de la MAPA des 24 heures ... 34
 H. Données de la polygraphie ... 35

II. Analyse multivariée ... 35

III. Discrétisation des variables quantitatives du modèle réduit 39

Discussion ... 43

I. Contexte ... 44

II. Comparaison des résultats à la littérature .. 47

III. Limites .. 51

Conclusion .. 52

Références bibliographiques .. 53

Annexes .. 58
Introduction : Le syndrome d'apnées-hypopnées obstructives du sommeil (SAHOS) est une pathologie fréquente, et représente le premier facteur de résistance de l'hypertension artérielle. Le SAHOS est associé, proportionnellement à sa gravité, à une surmortalité cardio-vasculaire surtout en cas de somnolence diurne. La suspicion clinique du SAHOS repose sur des questionnaires ne permettant pas de distinguer les SAHOS justifiant d'un traitement. L’objectif de cette étude est d’identifier des paramètres permettant d’affiner le diagnostic de SAHOS modérés à sévères dans une population de patients hypertendus.

Méthode : Etude prospective menée de juillet 2015 à août 2017 dans le service de médecine vasculaire et HTA du CHRU de Lille dans une population de patients ayant une justification clinique de dépistage du SAHOS. Les données recueillies comprenaient des paramètres clinico-biologiques, les questionnaires d’Epworth, de Berlin et du STOP-BANG, des paramètres électrocardiographiques et échographiques, et un dépistage de SAHOS.

Résultats : 126 patients ont été inclus, séparés en 2 groupes suivant la présence d’un IAH≥15/H. L’analyse multivariée a permis de construire un modèle composé de 7 variables significativement différentes dans les deux groupes : la présence d’un diabète (OR=9.88, IC[2.15-54.6], p=0.05), le périmètre abdominal (OR=1.1, IC[1.02-1.2], p=0.01), le diamètre du sinus aortique (OR=1.12, IC[0.99-1.29], p=0.09), l’IMC (OR=0.88, IC[0.73-1.04], p=0.14), la pression artérielle systolique nocturne (OR=1.09, IC[0.99-1.14], p=0.12), la pression artérielle...
systolique moyenne sur 24h (OR=0,96, IC[0,91-1,007], p=0,11), le score STOP BANG (OR=0,71, IC[1,07-2,94], p=0,03). Ce modèle possède une sensibilité de 72% et une spécificité de 88%, pour dépister les patients à risque de SAHOS modérés à sévères.

Conclusion : La prévalence et l’incidence grandissantes du SAHOS en font un problème de santé publique nécessitant de définir des critères permettant d’affiner son diagnostic. Les troubles respiratoires nocturnes en lien avec l’obésité s’accompagnent d’atteintes métaboliques et cardiovasculaires qu’il faudra prendre en considération pour définir une population de patients hypertendus à risque de présenter un SAHOS justifiant une prise en charge. Les éléments utilisés quotidiennement en cardiologie comme la mesure ambulatoire de la pression artérielle et l’échographie cardiaque doivent donc être évalués pour affiner le diagnostic de SAHOS.
INTRODUCTION

I. Le syndrome d’apnées-hypopnées obstructives du sommeil

A. Définition des événements respiratoires obstructifs

Le SAHOS est en rapport avec une obstruction en regard des voies aériennes supérieures durant le sommeil.

Une apnée se définit par une interruption du débit aérien naso-buccal durant plus de 10 secondes (1).

Une hypopnée se définit par une diminution de la ventilation durant plus de dix secondes, accompagnée :

- Soit une diminution du débit aérien d’au moins 50%
- Soit d’une diminution du débit aérien de moins de 50%, mais associé à une désaturation transcutanée d’au moins 3% et/ou à un micro-réveil (1).
B. Définition du SAHOS

Le SAHOS est défini, à partir des critères de l'American Academy of Sleep Medicine (2), par la présence des critères A ou B et du critère C :

- A. Somnolence diurne excessive non expliquée par d'autres facteurs
- B. Au moins 2 des critères suivants, non expliqués par d'autres facteurs :
 - ronflements sévères et quotidiens
 - sensation d'étouffement ou de suffocation durant le sommeil
 - sommeil non réparateur
 - fatigue diurne
 - difficultés de concentration
 - nycturie (définie par la présence de plus d'une miction par nuit)
- C. Critère polysomnographique ou polygraphique : nombre d'apnées et/ou d'hypopnées supérieur ou égal à 5 par heure de sommeil (définition de l'index d'apnées-hypopnées (IAH)).

La sévérité du SAHOS est analysée selon 2 éléments (1) :

- L'IAH :
 - Léger : IAH compris entre 5 et 15 par heure
 - Modéré : IAH compris entre 15 et 30 par heure
 - Sévère : IAH supérieur à 30 par heure.

- La somnolence diurne : selon sa répercussion dans la vie quotidienne (faible, modérée ou importante).
C. Physiopathologie

Le SAHOS est le résultat d’une obstruction des voies aériennes supérieures localisée au niveau du pharynx.

Plusieurs phénomènes physiopathologiques sont décrits, qui peuvent être associés (3-5):
- Réduction du calibre des VAS : macroglossie, obésité, hypertrophie amygdalienne, malformation anatomique, tumeur, hypothyroidie, hypertrophie de la muqueuse oro-pharyngée
- Asynergie de contraction entre le diaphragme et les muscles dilatateurs des VAS
- Diminution de la contraction des muscles dilatateurs du pharynx
- Inaptitude à accroître le tonus des muscles dilatateurs du pharynx pour répondre à l’augmentation du CO₂
- Réponse ventilatoire démesurée à la suite des micro-éveils

Figure 1 : Voies aériennes supérieures et niveaux d’obstruction (5)
D. Epidémiologie et facteurs favorisants

Le SAHOS est une pathologie fréquente, qui touche 2% des femmes et 4% des hommes d'âge moyen (6).

De nombreux facteurs de risque ont été mis en évidence : le sexe masculin, la ménopause, l'âge, l'obésité, les anomalies maxillo-faciales, la macroglossie pouvant apparaître lors de pathologies telles que l'hypothyroïdie ou l'acromégalie, la polyposie nasale, ou encore les déviations de la cloison nasale.

E. Symptomatologie

Le SAHOS peut être marqué par une symptomatologie nocturne et diurne as spécifique (6-8).

Les symptômes nocturnes sont représentés par les ronflements, les apnées, une xérostomie, une nycturie, un sommeil perturbé ou des sueurs nocturnes.

Les symptômes diurnes sont représentés par une somnolence, des troubles de la concentration, de l'humeur ou de la libido, des maux de gorge matinaux ou encore des céphalées.
Ces symptômes, notamment en association peuvent faire évoquer le diagnostic de SAHOS, mais ne peuvent orienter les patients de façon certaine au vu de leur aspéificité (9).

F. Co-morbidités associées au SAHOS

1. L'hypertension artérielle

Le SAHOS est en relation avec l'hypertension artérielle (10) sous différentes formes : systolo-diastolique permanente, diastolique nocturne avec une abolition du cycle nycthéméral et une pression artérielle maximale durant la reprise inspiratoire, systolo-diastolique nocturne. Le SAHOS serait un facteur de risque de déclarer une hypertension artérielle dans les 4 ans après l'apparition des symptômes, indépendamment de l'IAH (11). Le SAHOS est la première cause d'HTA résistante, retrouvé chez 64% des patients en présentant une (12). Le mécanisme du développement de cette hypertension est probablement en rapport avec l'hyperactivité du système sympathique secondaire à l'hypoxie intermittente et l'hypercapnie, associé avec une altération de la paroi endothéliale vasculaire.
2. La maladie coronaire

Les études retrouvent une prévalence d’environ 30 % de SAHOS chez des patients porteurs d’une coronaropathie (15). Le SAHOS entraîne une majoration des besoins en oxygène secondaire à une tachycardie et à l’augmentation de la pression artérielle, pendant que l’hypoxie engendre une diminution des apports en oxygène. Ces éléments peuvent aggraver ou révéler une cardiopathie ischémique. Un angor nocturne ou une ischémie myocardique silencieuse sont présents chez 30% des patients coronariens porteurs d’un SAHOS (13). Le SAHOS sévère augmente de 50% à 60% le risque de développer une insuffisance coronarienne. Le SAHOS sévère multiplierait par cinq le risque d’accident coronarien (14).

3. L’anévrisme aortique

L’augmentation intermittente de la pression intrathoracique durant les apnées obstructives serait en lien avec le développement d’anévrismes thoraciques (16). La prévalence de SAHOS chez les patients porteurs d’anévrisme de l’aorte abdominale serait de 40% (17).
4. La dissection aortique

Une étude a mis en évidence une prévalence importante du SAHOS chez des patients ayant présenté un syndrome aortique aigu (18). L’association effords intra-thoraciques et apnéas obstructives favorisent la progression de la taille de l’aorte après dissection (19).

5. L’insuffisance cardiaque

Les dépressions intrathoraciques associées d’une part à l’hypoxémie et d’autre part à l’hypercapnie provoquent une augmentation de la post charge des ventricules gauche et droit. Associées à l’activation sympathique et donc à l’augmentation de la fréquence cardiaque due aux éveils nocturnes, il en résulte une augmentation de la consommation en oxygène des ventricules et une diminution du transport d’oxygène, entraînant une dysfonction bi-ventriculaire. Des études récentes retrouvent une prévalence de 50% de syndromes d’apnéas du sommeil chez les patients porteurs d’une insuffisance cardiaque (20-21).

6. L’accident vasculaire cérébral

La diminution de la perfusion cérébrale secondaire à l’hypoxie et l’altération de la paroi vasculaire via l’élévation de la pression artérielle sont des facteurs de risques de présenter un accident vasculaire cérébral (AVC). De nombreuses
études montrent une prévalence d’environ 60 % de SAHOS avec IAH ≥ à 10/h et d’environ 30 à 35 % de SAHOS avec IAH ≥ à 30/h chez des patients ayant présenté un AVC. En fonction de sa sévérité, le SAHOS expose au risque d’AVC constitués ou transitoires, et il est également associé aux AVC silencieux (22-24).

7. Les troubles du rythme

La prévalence de la fibrillation atriale chez les patients atteints de SAHOS est de 3 à 5% (25). L’hypoxémie et les variations de pressions intrathoraciques sont à l’origine de plusieurs mécanismes provoquant des modifications électriques et structurelles entraînant une FA (26). D’autres troubles du rythme tels que la bradycardie sinusale sévère, les pauses sinusalles et les blocs auriculo-ventriculaires peuvent également être déclenchés (26).

8. L’obésité abdominale

La prévalence de l’obésité chez les patients porteurs d’un SAHOS est d’au moins 50% (27), avec un risque de présenter des comorbidités liées au SAHOS plus élevé (28).
9. Le diabète

Le SAHOS occasionnerait une **insulinorésistance** et une **intolérance au glucose** secondaires entre autres mécanismes à l'hypoxie intermittente (29). Les études retrouvent une prévalence du SAHOS de **55% à 85%** chez les patients présentant un diabète de type 2 (30).

10. La dyslipidémie

L'hypoxie intermittente, l'augmentation du TNFα et de l'IL-6 au cours du SAHOS seraient à l'origine d'une **augmentation de la cholestérolémie, du LDLc, des triglycéridés**, d'une **diminution de l'HDLc** et une augmentation du rapport cholestérol / HDLc (31-32).

11. La somnolence diurne

L'interruption du sommeil par les apnées occasionne une perturbation au sein des stades normaux du sommeil, avec une **nette réduction des phases de sommeil profond**. Les répercussions diurnes de cette déstructuration provoquent des troubles de l'attention et une somnolence diurne pouvant être impliqués dans des accidents de la route ou professionnels (33). Une étude a montré que les patients porteurs d’un SAHOS ont **six à sept fois plus de risque d’avoir un accident de la circulation** comparé à des sujets contrôles (34).
G. SAHOS et paramètres écho-cardiographiques

Le diamètre du ventricule gauche, l'épaisseur du septum interventriculaire et de la paroi postérieure, et la masse du ventricule gauche sont augmentés chez les patients présentant un SAHOS, indépendamment de la présence d'une obésité, de l'âge ou de la présence d'un diabète. L'augmentation de l'épaisseur du SIV et du mur libre du VD serait prédictive d'un index d'apnées-hypopnées plus élevé (56-57).

La fraction d'éjection du ventricule gauche (FEVG) diminuerait chez les patients porteurs d'un SAHOS (58-59).

H. Outils de dépistage du SAHOS

Il est recommandé d'utiliser un questionnaire systématisé pour l'évaluation clinique initiale d'un patient suspect de SAHOS (1). Les questionnaires présentés ci-dessous sont disponibles en annexe.

1. Le score d’Epworth

Le questionnaire d’Epworth (annexe 1) comprend huit questions qui analysent le degré de somnolence dans des situations de la vie quotidienne. Un
score supérieur ou égal à 15 doit inciter à orienter le patient vers une consultation de pneumologie.

2. Le score de Berlin

Le questionnaire de Berlin (annexe 2) comprend trois catégories de questions (neuf au total) orientées vers la somnolence et les ronflements et la présence ou non d’une hypertension artérielle. La présence d’au moins deux catégories positives (score supérieur ou égal à deux pour chacune) permet d’identifier le patient comme à haut risque de présenter un SAHOS.

3. Le score STOP-BANG

Le STOP-BANG (annexe 3) est un questionnaire dont les 8 items concernent les ronflements, l’asthénie, les apnées durant le sommeil, l’HTA, l’IMC, l’âge, le tour de cou et le sexe. Il est positif si au moins 3 items sur les 8 sont présents.

4. Méta-analyse

Une méta-analyse réalisée en 2014 par Qaseem et al (35), a étudié les sensibilités et les spécificités de ces scores (tableau 1).
I. Diagnostic

L’examen de référence est l’enregistrement polysomnographique réalisé dans un laboratoire de sommeil (1). Il analyse le flux aérien buccal, dans le but d’établir l’index d’apnées-hypopnées, les mouvements thoraco-abdominaux, permettant de distinguer les apnées obstructives des apnées centrales, la saturation transcutanée en oxygène, l’électrocardiogramme, l’électro-encéphalogramme, l’électromyogramme mentonnier, la position du patient et les ronflements. Cet examen se réalise lors d’une hospitalisation programmée.

Il existe également un outil validé permettant d’effectuer un enregistrement de l’index d’apnées-hypopnées au domicile du patient, l’Apnéalink™. Les études menées visant à valider cet outil ont trouvé des sensibilités et spécificités satisfaisantes, notamment pour les IAH ≥ 15/H (36-38).

Tableau 1 : Méta-analyse par Qaseem et al.

<table>
<thead>
<tr>
<th>Questionnaire</th>
<th>IAH</th>
<th>Sensibilité (%)</th>
<th>Spécificité (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questionnaire d’Epworth</td>
<td>5-15</td>
<td>24-96</td>
<td>29-89</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>21-50</td>
<td>43-83</td>
</tr>
<tr>
<td></td>
<td>>30</td>
<td>36-50</td>
<td>70.79</td>
</tr>
<tr>
<td>Questionnaire de Berlin</td>
<td>5-15</td>
<td>30-93</td>
<td>17-95</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>40-83</td>
<td>20-97</td>
</tr>
<tr>
<td></td>
<td>>30</td>
<td>17-87</td>
<td>37-77</td>
</tr>
<tr>
<td>STOP-BANG</td>
<td>5-15</td>
<td>36-97</td>
<td>10-89</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>44-99</td>
<td>11-77</td>
</tr>
<tr>
<td></td>
<td>>30</td>
<td>56-100</td>
<td>11-74</td>
</tr>
</tbody>
</table>
J. Principes thérapeutiques

1. Pression positive continue

Il s'agit du traitement le plus utilisé. La PPC est administrée par un générateur d'air sous pression par le biais d'un masque nasal ou naso-buccal. Elle permet de supprimer l'obstacle sur les voies aériennes.

Actuellement, le traitement par PPC est pris en charge par la Sécurité Sociale si l'IAH est supérieur à 30/heure ou si l'index de micro-réveils est supérieur à 10/heure. Elle peut être demandée également si l'IAH est inférieur à 30/heure chez un patient présentant des comorbidités cardiovasculaires importantes ou un emploi à risque (type chauffeur).

PPC et événements cardio-vasculaires : Il existerait une augmentation du risque d'événements cardio-vasculaires mortels ou non mortels chez les patients porteurs d'un SAHOS non traité par PPC (39-40).

PPC et AVC : Une étude (41) a montré que le risque de récurrence d'AVC était cinq fois plus important dans les 18 premiers mois si les patients n'étaient pas traités par PPC.

PPC et coronaropathie : La coronaropathie serait améliorée sous CPAP (42). L'ischémie myocardique et l'angor nocturnes seraient diminués pas la PPC (43).
PPC et fibrillation atriale : Une étude a montré que le nombre d’ épisodes de FA paroxystique diminuait lors du traitement par CPAP des SAHOS modérés à sévères (44). Une autre étude a trouvé que le taux de récidive de FA après cardioversion était plus élevé chez les SAHOS non traités (45).

PPC et fonction cardiaque : Le traitement par PPC améliorerait la fonction des ventricules ainsi que leurs morphologies (46-47).

2. Traitement médical

Il s’agit principalement des mesures hygiéno-diététiques et des orthèses d’avancées mandibulaires, utilisées chez les patients porteurs d’un SAHOS sévère et intolérants à la PPC.

3. Traitement chirurgical ORL

Il permet de lever l’obstacle sur les voies aériennes en retirant spécifiquement l’anomalie ORL responsable de l’obstruction.
4. Recommandations de la Haute Autorité de Santé

La HAS (48) recommande de traiter les patients dont le SAHOS est modéré ou sévère (IAH ≥ 15) et qui présente au moins trois des symptômes suivants : somnolence diurne, ronflements sévères et quotidiens, sensation d’étouffement ou de suffocation pendant le sommeil, fatigue diurne, nycturie, céphalées matinales. Le choix du dispositif médical (PPC ou orthèse d’avancée mandibulaire (OAM)) dépend de la sévérité des symptômes :

- La PPC est recommandée en première intention pour un IAH ≥ 30/H, et lorsque l'IAH est compris entre 15 et 30/H en présence d'un sommeil de mauvaise qualité (≥ 10 micro-réveils/H) ou d'une pathologie cardio-vasculaire grave associée (HTA résistante, FA récidivante, insuffisance ventriculaire gauche sévère ou coronaropathie mal contrôlée, antécédent d'AVC). Dans toutes ces situations, l'OAM est une alternative en cas de refus ou d'intolérance à la PPC.

- L'OAM est recommandée en première intention lorsque l'IAH est compris entre 15 et 30 en l'absence de pathologie cardio-vasculaire grave associée. Dans ces cas, l'OAM est plus efficace que la PPC.

- Les règles hygiéno-diététiques sont recommandées dans tous les cas.
II. Objectif

Devant des scores cliniques ne permettant pas d'identifier les patients les plus à risque de présenter un syndrome d'apnées du sommeil, il nous parait important de trouver des marqueurs peu coûteux et disponibles de façon à affiner le dépistage des populations les plus à risque de présenter un SAHOS. Le SAHOS fait partie du quotidien du cardiologue, car le syndrome d’apnées aggrave ou déclenche les pathologies cardiovasculaires aigües et contribue au développement pré clinique de l’atteinte d’organe cible. Le cardiologue utilise de manière quotidienne des examens complémentaires qui permettent d’obtenir des arguments indirects concernant la présence d’un SAHOS.

L’objectif de cette étude est de mettre en valeur des paramètres de la mesure ambulatoire de la pression artérielle des 24h, de l’électrocardiogramme et de l’échographie cardiaque offrant la possibilité d’affiner le diagnostic de SAHOS modérés à sévères.
I. Population

L’étude a été réalisée de manière prospective de juillet 2015 à août 2017, chez des patients hypertendus vus en consultation ou hospitalisés de façon programmée pour bilan d’hypertension au sein du service de médecine vasculaire et d’hypertension artérielle du Centre Hospitalier Universitaire de Lille.

Les **critères d’inclusion** étaient les suivants :

- Homme ou femme
- Age compris entre 18 et 80 ans
- Patient hypertendu traité ou non
- Indication de recherche de SAHOS

Les **critères d’exclusion** étaient les suivants :

- SAHOS traité ou traitement arrêté depuis moins de trois mois
- Femme enceinte
- Patient ne pouvant pas répondre au questionnaire
- Refus du patient de participer à l’étude

Les patients acceptant de participer ont signé un consentement éclairé.
II. Données recueillies

A. Données cliniques

- L’âge,
- Le sexe,
- Les facteurs de risques vasculaires :
 - tabagisme : jamais, actif ou sevré depuis moins de 3 ans, sevré depuis de 3 ans),
 - diabète : défini par une glycémie à jeun > 1.26 g/l à deux reprises ou par une glycémie > 2g/l à n’importe quel moment de la journée,
 - hypercholestérolémie : définie par un taux de LDL cholestérol > 1.6 g/l,
 - indice de masse corporelle : calculé par la formule poids (kg) / taille² (m), les patients ayant un IMC ≥ 30 kg/m² présentant une obésité,
- Les antécédents personnels cardio-vasculaires :
 - coronaropathie,
 - AVC,
 - AOMI ou pathologie aortique,
 - insuffisance cardiaque,
- La présence ou non d’un syndrome métabolique défini, selon NCEP ATP III, par la présence d’au moins trois facteurs de risque parmi les suivants :
 - obésité abdominale (tour de taille > 102 cm chez l’homme et > 88 cm chez la femme),
- triglycérides ≥ 1.5 g/l,
- HDL cholestérol < 0.4 g/l chez l'homme et < 0.5 g/l chez la femme,
- pression artérielle ≥ 130 / 85 mmHg,
- glycémie à jeun ≥ 1.10 g/l,
- La présence d’une symptomatologie évocatrice de SAHOS : ronflements (jamais, parfois, souvent, systématiquement, ne sait pas), nycturie, étouffements nocturnes, réveils nocturnes, céphalées matinales, sommeil non récupérateur, asthénie matinale, troubles de la concentration,
- La classe de Mallampati, correspondant à la visibilité des structures anatomiques lors de l’ouverture buccale en position assise, et définie selon 4 classes (54) :
 - 1/ toute la luette et les loges amygdaliennes sont visibles ;
 - 2/ la luette est partiellement visible ;
 - 3/ le palais membraneux est visible,
 - 4/ seul le palais osseux est visible
- Le périmètre abdominal (cm), mesuré à hauteur de l’ombilic,
- Le tour de cou (cm),
- La mesure clinique de la pression artérielle clinique systolique et diastolique, moyennée après 3 prises cliniques successives (mmHg)
- La pression artérielle pulsée clinique (mmHg) : calculée par la formule PAS – PAD,
- La mesure de la pression artérielle systolique et diastolique par holter des 24h (mmHg) : une mesure de pression artérielle toutes les 15 minutes, heures diurnes 6h-22h, heures nocturnes 22h-6h,
- La pression artérielle pulsée des 24h (mmHg) : calculée par la formule PAS 24h – PAD 24h,
- La mesure clinique de la fréquence cardiaque, moyennée après 3 prises successives (battement/minute),
- La mesure de la fréquence cardiaque par holter des 24h (battement/minute),
- Le dipping correspondant à la baisse de la pression artérielle systolique de plus de 10% durant la période nocturne, par rapport à la période diurne (%).

B. Données biologiques

- Cholestérol total, HDL cholestérol, LDL cholestérol, triglycérides (g/l)
- Glycémie à jeun (g/l),
- Créatininémie (g/l).

C. Traitement médical en cours

- Traitements anti-hypertenseurs : IEC, ARA2, inhibiteurs calciques, bétabloquants cardio-sélectifs, bétabloquants non cardio-sélectifs, diurétiques thiazidiques, diurétiques anti-aldostérone, alphabloquants, antihypertenseurs centraux,
- Le **score de traitement** correspondant au nombre de traitements anti-hypertenseurs pris par le patient parmi les différentes classes thérapeutiques citées précédemment,
- **Statine**.

D. Scores validés

- Le score au questionnaire d’**Epworth** (annexe 1),
- Le score au questionnaire de **Berlin** (annexe 2),
- Le score au **STOP-BANG** (annexe 3).

E. Données de l’électrocardiogramme

- Le **rythme** sinusal ou non
- L’indice de **Sokolow** (mm), correspondant à S en V1 + R en V5, positif lorsqu’il est ≥ 35 mm,
- L’**indice de Cornell** (mm), correspondant à R en aVL + S en V3, positif pour le diagnostic d’HVG électrique lorsqu’il est > 28 mm chez l’homme ou 20 mm chez la femme,
- La taille de l’**onde R en aVL** (mm),
- Le **produit de Cornell** (mm.ms), correspondant à (R en aVL + S en V3) x durée du QRS pour un homme et à (R en aVL + S en V3 + 8) x durée du
QRS pour une femme, positif pour le diagnostic d’HVG électrique lorsqu’il est ≥ 2400 mm.ms,
- La présence ou non d’un **bloc de branche droit complet** défini par une durée du QRS ≥ 120 ms, un retard droit en V1-V2 avec aspect rsr’, rsR’, rSR’, qR ou RR’,
- La présence ou non d’un **bloc de branche gauche complet** défini par une durée du QRS ≥ 120 ms, un retard gauche en V5-V6 et DI aVL.

F. Données de l’échographie cardiaque trans-thoracique

- La **fraction d’éjection du ventricule gauche (%)**,
- Le **diamètre télé-diastolique du ventricule gauche (mm)**,
- L’épaisseur du **septum interventriculaire (mm)**,
- L’épaisseur de la **pression pariétale (mm)**,
- La **mesure de la masse ventriculaire gauche** calculée par la formule
 \[\text{MVG} = 0.8 \times [1.04(DTDVG + SIV + PP)^3 - DTDVG^3] - 0.6 \text{ grammes} \]
 (convention de l'ASE) et réajustée à la taille\(^{2.7}\)(kg/m\(^{2.7}\)),
- Le **diamètre le l’aorte ascendante dans sa portion sinusale (mm)**,
- Le **diamètre de l’aorte ascendante dans sa portion tubulaire (mm)**,
- Le **diamètre télé-diastolique du ventricule droit (mm)**,
- Le **TAPSE** (tricuspid annular plane systolic excursion) : déplacement longitudinal de la partie latérale de l’anneau tricuspidien (mm).
G. Données de la polygraphie

- Index d’apnées-hypopnées
- Saturation transcutanée en oxygène moyenne nocturne
- Temps passé avec une SpO2 inférieure à 90%

Ces données ont été recueillies par polygraphie ou polysomnographie réalisée dans le cadre d’une hospitalisation programmée ou par Apnéalink au domicile ou en hospitalisation.

III. Analyse statistique

Les analyses statistiques ont été réalisées avec le logiciel R (version 3.4).

Les patients ont été séparés en deux groupes, selon le résultat d’index apnée hypopnée retrouvé à la polygraphie respiratoire. Un groupe comprenait les patients présentant un **IAH strictement inférieur à 15/H** (IAH < 15/H) tandis que l’autre groupe comprenait les patients présentant un **IAH supérieur ou égal à 15/H** (IAH ≥ 15/H).

Dans un premier temps a été réalisée une **analyse descriptive**. Les moyennes et écart-types ont été calculés pour les variables quantitatives, les médianes et intervalles interquartiles pour les variables discrètes, et enfin les effectifs et fréquences pour les variables qualitatives.
Dans un deuxième temps ont été réalisées des analyses bivariées. Nous avons comparé deux groupes de patients, l’un dont l’IAH était strictement inférieur à 15 (correspondant à l’absence de SAHOS ou à la présence un SAHOS léger), et l’autre dont l’IAH était supérieur ou égal à 15 (correspondant à la présence d’un SAHOS modéré ou sévère). Les tests utilisés étaient le Khi-2, le Mann-Whitney-Wilcoxon et le Fisher. Le seuil de significativité était de 0.05.

Dans un troisième temps, deux modèles ont été réalisés par le biais de deux méthodes :

- **Analyse multivariée** : Elle a été réalisée pour les résultats revenus significatifs lors de l’analyse bivariée, via un modèle de régression logistique binaire. Les données présentant une p valeur strictement inférieure à 0.2 dans l’analyse bivariée, avec effectifs suffisants si les données étaient qualitatives, ont été intégrées dans le modèle complet. N’ont été retenues au final que les données cliniques et paracliniques accessibles facilement, de définition claire, de recueil fiable et de faible variabilité afin de construire un modèle performant.
 La qualité du modèle réduit a été analysée par l’aire sous la courbe ROC et le calcul de la sensibilité et de la spécificité. Les odds-ratio et intervalles de confiance des variables ont ensuite été calculés.

- **Discrétisation des variables quantitatives du modèle réduit** :
 L’interprétation des odds-ratios des données quantitatives du modèle réduit étant moins évidente que celle des odds-ratios des données
qualitatives, la sélection automatique des variables a été réitérée après
discrétisation des variables quantitatives en 2 classes. La méthode utilisée
était celle d'une discrétisation "non supervisée" dite de l'arbre de
régression, qui permettait de tenir compte de la dispersion des classes.
RESULTATS

127 patients ont au total été inclus. 1 patient ne présentait pas d’IAH.

Le groupe IAH < 15/H était constitué de 84 patients (66.6%), et le groupe IAH ≥ 15/H de 42 patients (33.3%).

I. Analyse bivariée

A. Caractéristiques générales de la population

Deux éléments morphologiques étaient significativement différents dans les deux groupes. Le périmètre abdominal et le tour de cou étaient plus importants dans le groupe IAH ≥ 15/H (respectivement 114.9 cm ± 15.4 cm vs. 104.2 cm ± 14.4 cm, p = 0.0002 et 42.9 cm ± 3.8 cm vs. 40.2 cm ± 5.6 cm, p = 0.00038).

Les patients présentant un diabète étaient significativement plus nombreux dans le groupe IAH ≥ 15/H (14 patients soit 33.3% vs. 8 patients soit 9.5%, p = 0.0021).
Il y avait davantage de syndromes métaboliques dans le groupe IAH ≥ 15 que dans le groupe IAH < 15 (27 patients soit 71.7% vs. 35 patients soit 41.7%, p = 0.0049).

A noter que l’on retrouvait des résultats proches de la significativité pour la présence plus importante d’une dyslipidémie et d’une coronaropathie, ainsi que d’un IMC plus important dans le groupe IAH ≥ 15 (respectivement p = 0.055, p = 0.0072, p = 0.059).

Le descriptif global de la population ainsi que la division des 2 sous-groupes sont présentés dans les tableaux.
Tableau 2 : Caractéristiques générales de la population

<table>
<thead>
<tr>
<th>Variable</th>
<th>Population totale</th>
<th>IAH < 15</th>
<th>IAH > 15</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 127</td>
<td>n = 84</td>
<td>n = 42</td>
<td></td>
</tr>
<tr>
<td>Caractéristiques démographiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age lors de l'inclusion (années)</td>
<td>52.8 ± 14</td>
<td>51.3 ± 14.4</td>
<td>55.6 ± 12.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Sexe féminin n(%)</td>
<td>52 (40.9)</td>
<td>38 (45.2)</td>
<td>14 (33.3)</td>
<td>0.28</td>
</tr>
<tr>
<td>Facteurs de risques vasculaires</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabagisme n(%)</td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
</tr>
<tr>
<td>- actif ou sevré depuis moins de 3 ans</td>
<td>47 (37)</td>
<td>32 (38.1)</td>
<td>15 (35.7)</td>
<td></td>
</tr>
<tr>
<td>- sevré depuis plus de 3 ans</td>
<td>33 (26)</td>
<td>21 (25)</td>
<td>12 (28.6)</td>
<td></td>
</tr>
<tr>
<td>- absence</td>
<td>47 (37)</td>
<td>31 (36.9)</td>
<td>15 (35.7)</td>
<td></td>
</tr>
<tr>
<td>Dyslipidémie n(%)</td>
<td>44 (34.6)</td>
<td>24 (28.6)</td>
<td>20 (47.6)</td>
<td>0.055</td>
</tr>
<tr>
<td>Diabète n(%)</td>
<td>22 (17.3)</td>
<td>8 (9.5)</td>
<td>14 (33.3)</td>
<td>0.0021</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>30.3 ± 6.3</td>
<td>29.5 ± 5.8</td>
<td>31.8 ± 7.1</td>
<td>0.059</td>
</tr>
<tr>
<td>Syndrome métabolique n(%)</td>
<td>62 (50.4)</td>
<td>35 (41.7)</td>
<td>27 (71.1)</td>
<td>0.0049</td>
</tr>
<tr>
<td>Antécédents cardio-vasculaires</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronaropathie n(%)</td>
<td>16 (12.6)</td>
<td>7 (8.3)</td>
<td>9 (21.4)</td>
<td>0.072</td>
</tr>
<tr>
<td>Insuffisance cardiaque n(%)</td>
<td>4 (3.1)</td>
<td>2 (2.4)</td>
<td>2 (4.8)</td>
<td>0.6</td>
</tr>
<tr>
<td>Accident vasculaire cérébral n(%)</td>
<td>12 (15.7)</td>
<td>8 (9.5)</td>
<td>4 (9.5)</td>
<td>1</td>
</tr>
<tr>
<td>AOMI ou pathologie aortique n(%)</td>
<td>20 (15.7)</td>
<td>13 (15.5)</td>
<td>6 (14.3)</td>
<td>1</td>
</tr>
<tr>
<td>Caractéristiques physiques</td>
<td></td>
<td></td>
<td></td>
<td>0.48</td>
</tr>
<tr>
<td>Classe de Mallampati n(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1</td>
<td>16 (13.1)</td>
<td>12 (14.8)</td>
<td>4 (10)</td>
<td></td>
</tr>
<tr>
<td>- 2</td>
<td>48 (39.3)</td>
<td>33 (40.7)</td>
<td>14 (35)</td>
<td></td>
</tr>
<tr>
<td>- 3</td>
<td>39 (32)</td>
<td>26 (32.1)</td>
<td>13 (32.5)</td>
<td></td>
</tr>
<tr>
<td>- 4</td>
<td>19 (15.6)</td>
<td>10 (12.3)</td>
<td>9 (22.5)</td>
<td></td>
</tr>
<tr>
<td>Périmètre abdominal (cm)</td>
<td>107 ± 15.5</td>
<td>104.2 ± 114.9 ±</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.4</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td>Tour de cou (cm)</td>
<td>41.1 ± 5.2</td>
<td>40.2 ± 5.6</td>
<td>42.9 ± 3.8</td>
<td>0.00038</td>
</tr>
</tbody>
</table>

*AOMI : artérite oblitérante des membres inférieurs ; IMC : indice de masse corporelle

B. Données de la symptomatologie

Il n’y avait pas de différence significative entre les deux groupes concernant la symptomatologie diurne et nocturne.
C. Données des traitements médicamenteux

Il n’y avait pas de différence significative entre les deux groupes concernant les traitements anti hypertenseurs et le traitement par statine. Les patients avaient un score de traitements anti hypertenseurs identiques.

Tableau 3 : Données de la symptomatologie

<table>
<thead>
<tr>
<th>Variable</th>
<th>Population totale n = 127</th>
<th>IAH < 15 n = 84</th>
<th>IAH > 15 n = 42</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ronflements n(%)</td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td>- jamais</td>
<td>14 (11)</td>
<td>10 (11.9)</td>
<td>3 (7.1)</td>
<td></td>
</tr>
<tr>
<td>- parfois</td>
<td>24 (18.9)</td>
<td>18 (21.4)</td>
<td>6 (14.3)</td>
<td></td>
</tr>
<tr>
<td>- souvent</td>
<td>40 (31.5)</td>
<td>24 (28.6)</td>
<td>16 (38.1)</td>
<td></td>
</tr>
<tr>
<td>- systématiquement</td>
<td>33 (26)</td>
<td>20 (23.8)</td>
<td>13 (31)</td>
<td></td>
</tr>
<tr>
<td>- ne sait pas</td>
<td>16 (12.6)</td>
<td>12 (14.3)</td>
<td>4 (9.5)</td>
<td></td>
</tr>
<tr>
<td>Nycturie n(%)</td>
<td>83 (65.4)</td>
<td>51 (60.7)</td>
<td>31 (73.8)</td>
<td>0.21</td>
</tr>
<tr>
<td>Etouffements nocturnes n(%)</td>
<td>19 (15.1)</td>
<td>10 (12)</td>
<td>9 (21.4)</td>
<td>0.26</td>
</tr>
<tr>
<td>Réveils nocturnes n(%)</td>
<td>80 (63.5)</td>
<td>54 (65.1)</td>
<td>25 (59.5)</td>
<td>0.68</td>
</tr>
<tr>
<td>Céphalées matinales n(%)</td>
<td>35 (27.6)</td>
<td>20 (23.8)</td>
<td>15 (35.7)</td>
<td>0.23</td>
</tr>
<tr>
<td>Sommeil non récupérateur n(%)</td>
<td>61 (48)</td>
<td>39 (46.4)</td>
<td>22 (52.4)</td>
<td>0.66</td>
</tr>
<tr>
<td>Asthénie matinale n(%)</td>
<td>58 (46)</td>
<td>37 (44)</td>
<td>21 (51.2)</td>
<td>0.57</td>
</tr>
<tr>
<td>Troubles de la concentration n(%)</td>
<td>34 (27)</td>
<td>27 (32.5)</td>
<td>7 (16.7)</td>
<td>0.095</td>
</tr>
</tbody>
</table>

Note : *ARA 2 : anti-récepteur de l’angiotensine 2 ; BB : béta-bloquant ; DS : dérivation standard ; IEC : inhibiteur de l’enzyme de conversion*
D. Données biologiques

La glycémie à jeun était significativement plus élevée dans le groupe IAH ≥ 15/H (1.2 g/l ± 0.4 g/l vs. 1 g/l ± 0.2 g/l, p = 0.012).

Il n’y avait pas de différence significative entre les groupes concernant des données lipidiques et la créatininémie.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Population totale</th>
<th>IAH < 15</th>
<th>IAH > 15</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholestérol total (g/l)</td>
<td>1.9 ± 0.5</td>
<td>1.9 ± 0.4</td>
<td>1.9 ± 0.5</td>
<td>0.82</td>
</tr>
<tr>
<td>HDL cholestérol (g/l)</td>
<td>0.5 ± 0.1</td>
<td>0.5 ± 0.1</td>
<td>0.5 ± 0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>LDL cholestérol (g/l)</td>
<td>1.1 ± 0.4</td>
<td>1.1 ± 0.4</td>
<td>1.1 ± 0.4</td>
<td>0.66</td>
</tr>
<tr>
<td>Triglycérides (g/l)</td>
<td>1.5 ± 1.3</td>
<td>1.5 ± 1.5</td>
<td>1.5 ± 0.9</td>
<td>0.15</td>
</tr>
<tr>
<td>Glycémie à jeun (g/l)</td>
<td>1.1 ± 0.3</td>
<td>1 ± 0.2</td>
<td>1.2 ± 0.4</td>
<td>0.012</td>
</tr>
<tr>
<td>Créatininémie (mg/l)</td>
<td>9.7 ± 5.5</td>
<td>9.8 ± 6.4</td>
<td>9.5 ± 2.8</td>
<td>0.32</td>
</tr>
</tbody>
</table>

*HDL : high density lipoprotein ; LDL : low density lipoprotein

E. Données des scores de dépistage de SAHOS validés

Le score STOP BANG était significativement plus élevé dans le groupe IAH ≥ 15/H (5.2 ± 1.6 vs. 3.8 ± 1.3, p < 0.0001).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Population totale</th>
<th>IAH < 15</th>
<th>IAH > 15</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epworth ± DS</td>
<td>6.7 ± 4.2</td>
<td>6.9 ± 4.3</td>
<td>6.4 ± 4.1</td>
<td>0.53</td>
</tr>
<tr>
<td>Berlin ± DS</td>
<td>2 ± 0.7</td>
<td>2 ± 0.8</td>
<td>2.1 ± 0.7</td>
<td>0.41</td>
</tr>
<tr>
<td>STOP BANG ± DS</td>
<td>4.3 ± 1.6</td>
<td>3.8 ± 1.3</td>
<td>5.2 ± 1.6</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

*DS : dérivation standard
F. Données de l’électrocardiogramme et de l’échocardiographie

Il n’y avait pas de différence significative entre les deux groupes concernant les données de l’électrocardiogramme.

On peut cependant noter que la mesure de l’onde R en AvL était proche du seuil de significativité ($p = 0.058$).

Concernant les données de l’échographie trans-thoracique, le diamètre du sinus aortique était significativement plus élevé dans le groupe IAH ≥ 15/H (35.8 mm \pm 4.8 mm vs. 32.4 mm \pm 4.9 mm, $p = 0.000076$).

Tableau 6 : Données de l’électrocardiogramme et de l’échographie cardiaque

<table>
<thead>
<tr>
<th>Variable</th>
<th>Population totale</th>
<th>IAH < 15</th>
<th>IAH > 15</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocardiogramme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sokolow (mm)</td>
<td>18.4 ± 8</td>
<td>18.7 ± 8.1</td>
<td>17.8 ± 8.1</td>
<td>0.34</td>
</tr>
<tr>
<td>Cornell (mm)</td>
<td>15.3 ± 8.4</td>
<td>14.5 ± 7.3</td>
<td>16.9 ± 10.2</td>
<td>0.28</td>
</tr>
<tr>
<td>Produit de Cornell (mm.ms)</td>
<td>1918.2 ± 1188</td>
<td>1832 ± 923.8</td>
<td>2103.8 ± 1957.5</td>
<td>0.69</td>
</tr>
<tr>
<td>Onde R en AvL (mm)</td>
<td>6.6 ± 4.4</td>
<td>6.1 ± 4.6</td>
<td>7.3 ± 4</td>
<td>0.058</td>
</tr>
<tr>
<td>Rythme sinusal n(%)</td>
<td>123 (96.9)</td>
<td>81 (96.4)</td>
<td>41 (97.6)</td>
<td>1</td>
</tr>
<tr>
<td>BBD complet n(%)</td>
<td>19 (15)</td>
<td>11 (13.1)</td>
<td>8 (19)</td>
<td>0.54</td>
</tr>
<tr>
<td>BBG complet n(%)</td>
<td>22 (17.3)</td>
<td>15 (17.9)</td>
<td>7 (16.7)</td>
<td>1</td>
</tr>
<tr>
<td>Echographie cardiaque</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamètre sinus aortique (mm)</td>
<td>33.6 ± 5.1</td>
<td>32.4 ± 4.9</td>
<td>35.8 ± 4.8</td>
<td>0.000076</td>
</tr>
<tr>
<td>Diamètre aorte ascendante (mm)</td>
<td>34.3 ± 5.8</td>
<td>34 ± 6.4</td>
<td>34.8 ± 4.6</td>
<td>0.23</td>
</tr>
<tr>
<td>Septum interventriculaire (mm)</td>
<td>10.6 ± 2.1</td>
<td>10.6 ± 2.2</td>
<td>10.7 ± 1.7</td>
<td>0.74</td>
</tr>
<tr>
<td>Paroi postérieure (mm)</td>
<td>10.4 ± 1.9</td>
<td>10.4 ± 2</td>
<td>10.3 ± 1.6</td>
<td>1</td>
</tr>
<tr>
<td>DTDVG (mm)</td>
<td>47.9 ± 6.5</td>
<td>47.6 ± 4.8</td>
<td>48.4 ± 8.8</td>
<td>0.89</td>
</tr>
<tr>
<td>MVG (g/m^2)</td>
<td>43.9 ± 14.8</td>
<td>43.1 ± 11.7</td>
<td>45.3 ± 19.7</td>
<td>0.93</td>
</tr>
<tr>
<td>FEVG (%)</td>
<td>61.7 ± 7.1</td>
<td>62.5 ± 6.9</td>
<td>60.1 ± 7.3</td>
<td>0.069</td>
</tr>
<tr>
<td>DVD (mm)</td>
<td>28.8 ± 4</td>
<td>28.5 ± 4.5</td>
<td>29.3 ± 3.1</td>
<td>0.22</td>
</tr>
<tr>
<td>TAPSE (mm)</td>
<td>22.4 ± 4.7</td>
<td>22.5 ± 4.7</td>
<td>22.2 ± 4.7</td>
<td>0.75</td>
</tr>
</tbody>
</table>

*BBD : bloc de branche droit ; BBG : bloc de branche gauche ; DTDVG : diamètre télédiastolique du ventricule gauche ; DVD : diamètre ventricule droit ; FEVG : fraction d’éjection du ventricule gauche ; MVG : masse ventriculaire gauche ; TAPSE : tricuspid annular plane systolic excursion
G. Données des mesures de pression artérielle et de la fréquence cardiaque

La fréquence cardiaque mesurée cliniquement était significativement plus élevée dans le groupe IAH ≥ 15 (80.6 bpm ± 13.8 bpm vs. 74.1 bpm ± 13.9 bpm, p = 0.017).

La pression artérielle systolique des 24h était en moyenne significativement plus élevée dans le groupe IAH ≥ 15 (140.9 mmHg ± 22.5 mmHg vs. 135.5 mmHg ± 18.1 mmHg, p = 0.018).

Tableau 7 : Données des mesures de pression artérielle et de la fréquence cardiaque

<table>
<thead>
<tr>
<th>Variable</th>
<th>Population totale</th>
<th>IAH < 15</th>
<th>IAH > 15</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesures à l’examen clinique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA systolique moyenne (mmHg)</td>
<td>139.8 ± 20.9</td>
<td>139.6 ± 21.4</td>
<td>140.8 ± 19.7</td>
<td>0.77</td>
</tr>
<tr>
<td>PA diastolique moyenne (mmHg)</td>
<td>82.7 ± 15.1</td>
<td>82.9 ± 15.2</td>
<td>83 ± 14.3</td>
<td>0.97</td>
</tr>
<tr>
<td>Fréquence cardiaque (bpm)</td>
<td>76.2 ± 14.1</td>
<td>74.1 ± 13.9</td>
<td>80.6 ± 13.8</td>
<td>0.017</td>
</tr>
<tr>
<td>Pression pulsée (mmHg)</td>
<td>57.1 ± 13.4</td>
<td>56.7 ± 13.3</td>
<td>57.8 ± 13.8</td>
<td>0.67</td>
</tr>
<tr>
<td>Mesures du holter 24h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA systolique 24h (mmHg)</td>
<td>136.8 ± 19.8</td>
<td>135.5 ± 18.1</td>
<td>140.9 ± 22.5</td>
<td>0.018</td>
</tr>
<tr>
<td>PA diastolique 24h (mmHg)</td>
<td>81.9 ± 12.5</td>
<td>81.2 ± 11.6</td>
<td>84.3 ± 13.6</td>
<td>0.21</td>
</tr>
<tr>
<td>Fréquence cardiaque 24h (bpm)</td>
<td>72 ± 11.4</td>
<td>70.8 ± 10.6</td>
<td>74.8 ± 12.7</td>
<td>0.095</td>
</tr>
<tr>
<td>Pression pulsée 24h (mmHg)</td>
<td>54.9 ± 13.8</td>
<td>54.6 ± 11.8</td>
<td>56.6 ± 17.9</td>
<td>0.34</td>
</tr>
<tr>
<td>PA systolique diurne (mmHg)</td>
<td>141.2 ± 21.1</td>
<td>141.1 ± 18.9</td>
<td>142.4 ± 25.0</td>
<td>0.78</td>
</tr>
<tr>
<td>PA diastolique diurne (mmHg)</td>
<td>85.1 ± 13.0</td>
<td>85 ± 12.3</td>
<td>85.8 ± 14.2</td>
<td>0.91</td>
</tr>
<tr>
<td>Fréquence cardiaque diurne (bpm)</td>
<td>75.4 ± 11.9</td>
<td>75 ± 11.6</td>
<td>76.7 ± 12.8</td>
<td>0.49</td>
</tr>
<tr>
<td>PA systolique nocturne (mmHg)</td>
<td>129.8 ± 21.8</td>
<td>127.6 ± 18.6</td>
<td>135.9 ± 26.6</td>
<td>0.1</td>
</tr>
<tr>
<td>PA diastolique nocturne (mmHg)</td>
<td>76.2 ± 12.3</td>
<td>75 ± 11.2</td>
<td>79.6 ± 13.5</td>
<td>0.064</td>
</tr>
<tr>
<td>Fréquence cardiaque nocturne (bpm)</td>
<td>66.3 ± 10.6</td>
<td>65.3 ± 10.6</td>
<td>68.7 ± 10.6</td>
<td>0.12</td>
</tr>
<tr>
<td>Dipping n(%)</td>
<td>48 (42.5)</td>
<td>37 (47.4)</td>
<td>10 (29.4)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Bpm : battement par minute ; PA : pression artérielle
H. Données de la polygraphie

La SpO₂ était significativement plus basse dans le groupe IAH ≥ 15/H (92% ± 2.7% vs. 93.5% ± 1.9%, p = 0.02).

Le temps passé avec une SpO₂ inférieure à 90% était plus élevé dans le groupe IAH ≥ 15/H (17.6% ± 23.6% vs. 10.8% ± 18.5%).

Tableau 8 : Données de la polygraphie

<table>
<thead>
<tr>
<th>Variables</th>
<th>Population totale n = 127</th>
<th>IAH < 15 n = 84</th>
<th>IAH > 15 n = 42</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation moyenne en O₂ (%)</td>
<td>93 ± 2.3</td>
<td>93.5 ± 1.9</td>
<td>92 ± 2.7</td>
<td>0.002</td>
</tr>
<tr>
<td>Temps passé avec SpO₂ < 90% (%)</td>
<td>13 ± 20.5</td>
<td>10.8 ± 18.5</td>
<td>17.6 ± 23.6</td>
<td>0.00083</td>
</tr>
</tbody>
</table>

*SpO₂ : saturation pulsée en oxygène

II. Analyse multivariée

Les conditions nécessaires à l’analyse multivariée ont permis d’y intégrer 26 variables.

De ces variables ont été retirées celles présentant un lien direct avec l’IAH (saturation moyenne en oxygène nocturne, temps passé avec une saturation inférieure à 90% et présence d’apnées déclarées par le patient).

Des données restantes n’ont été conservées que celles présentant une définition claire, un recueil fiable, une accessibilité simple et une faible variabilité.
12 variables ont au total été testées dans le modèle multivarié :

- La présence d’un diabète
- La présence d’une coronaropathie
- Le tour de cou
- Le diamètre du sinus aortique
- L’Indice de Masse Corporelle
- Le score STOP BANG
- La mesure de la pression artérielle diastolique nocturne
- La mesure de l’onde R en aVL
- L’âge
- La pression artérielle systolique moyenne sur 24h
- La pression artérielle systolique moyenne nocturne.

Une sélection des variables automatique pas à pas descendante sur critère AIC est également appliquée sur ces 12 variables pour obtenir un modèle réduit avec le meilleur compromis entre nombre de variables explicatives et qualité du modèle. Elle permet ainsi d’éliminer les variables apportant un même niveau d’information, et de ne conserver que l’essentiel.

Le modèle de régression élimine automatiquement les patients présentant au minimum une valeur manquante sur les données explicatives. Sur les 126 patients initiaux, seuls 88 présentent des données complètes, dont 29 avec un IAH ≥15. Les résultats présentés ci-dessous font référence à cette population restreinte.
5 des 12 variables n’ont pas été retenues par la sélection automatique. Cela signifie qu’ajustés sur celles présentes dans le modèle réduit, les liens, dont certains étaient pourtant significatifs dans l’analyse bivariée, sont devenus non significatifs.

Le modèle réduit obtenu est composé des 7 variables suivantes :

<table>
<thead>
<tr>
<th>Variable retenue</th>
<th>OR</th>
<th>IC 95% (OR)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence diabète</td>
<td>9.88</td>
<td>[2.15-54.6]</td>
<td>0.005</td>
</tr>
<tr>
<td>Périmètre abdominal (cm)</td>
<td>1.1</td>
<td>[1.02-1.2]</td>
<td>0.01</td>
</tr>
<tr>
<td>Diamètre sinus aortique (mm)</td>
<td>1.12</td>
<td>[0.99-1.29]</td>
<td>0.09</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>0.88</td>
<td>[0.73-1.04]</td>
<td>0.14</td>
</tr>
<tr>
<td>Pression artérielle diastolique nocturne (mmHg)</td>
<td>1.06</td>
<td>[0.99-1.14]</td>
<td>0.12</td>
</tr>
<tr>
<td>Pression artérielle systolique sur 24h (mmHg)</td>
<td>0.96</td>
<td>[0.91-1.007]</td>
<td>0.11</td>
</tr>
<tr>
<td>Score stop bang</td>
<td>1.71</td>
<td>[1.07-2.94]</td>
<td>0.03</td>
</tr>
</tbody>
</table>

*IMC : indice de masse corporelle

Parmi les 7 variables présentes dans le modèle réduit, 3 sont liées en multivarié aux groupes :

- la **présence d’un diabète** : les patients présentant un diabète ont 9.88 fois plus de risque de faire partie du groupe d’IAH élevé (p = 0.005)
- le **périmètre abdominal** : une augmentation d’une unité du périmètre est responsable d’une augmentation du risque d’IAH élevé de 1.1 (p = 0.01)
- le **score STOP BANG** : une augmentation d’une unité du score est responsable d’une augmentation du risque d’IAH élevé de 1.71 (p = 0.03)
Les variables non significatives dans le modèle réduit, puisque conservées par la sélection automatique, participent également aux performances du modèle, et sont à utiliser pour prédire le groupe d’IAH d’un nouveau patient.

Les performances du modèles construit ont été analysées par une courbe ROC.

Figure 2 : Courbe ROC du modèle réduit obtenu par sélection des variables du modèle de régression logistique binaire

L’aire sous la courbe ROC vaut 0.88, pour une sensibilité (Se) de 72% et une spécificité (Sp) de 88%.
III. Discrétisation des variables quantitatives du modèle réduit

Tableau 10 : Discrétisation des variables quantitatives du modèle réduit

<table>
<thead>
<tr>
<th>Variable</th>
<th>Population totale</th>
<th>IAH < 15 n = 84</th>
<th>IAH > 15 n = 42</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Périmètre abdominal (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- < 108</td>
<td>60 (48)</td>
<td>47 (56)</td>
<td>13 (31.7)</td>
<td>0.018</td>
</tr>
<tr>
<td>- ≥ 108</td>
<td>65 (52)</td>
<td>37 (44)</td>
<td>28 (68.3)</td>
<td></td>
</tr>
<tr>
<td>Tour de cou (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- < 41.8</td>
<td>69 (55.6)</td>
<td>53 (64.6)</td>
<td>16 (38.1)</td>
<td>0.009</td>
</tr>
<tr>
<td>- ≥ 41.8</td>
<td>55 (44.4)</td>
<td>29 (35.4)</td>
<td>26 (61.9)</td>
<td></td>
</tr>
<tr>
<td>Diamètre sinus aortique (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- < 33.2</td>
<td>49 (47.1)</td>
<td>39 (58.2)</td>
<td>10 (27)</td>
<td>0.004</td>
</tr>
<tr>
<td>- ≥ 33.2</td>
<td>55 (52.9)</td>
<td>28 (41.8)</td>
<td>27 (73)</td>
<td></td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- < 33</td>
<td>88 (69.8)</td>
<td>62 (73.8)</td>
<td>26 (61.9)</td>
<td>0.24</td>
</tr>
<tr>
<td>- ≥ 33</td>
<td>38 (30.2)</td>
<td>22 (26.2)</td>
<td>16 (38.1)</td>
<td></td>
</tr>
<tr>
<td>PA diastolique nocturne (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- < 79</td>
<td>69 (76.2)</td>
<td>52 (66.7)</td>
<td>17 (50)</td>
<td>0.14</td>
</tr>
<tr>
<td>- ≥ 79</td>
<td>43 (38.4)</td>
<td>26 (33.3)</td>
<td>17 (50)</td>
<td></td>
</tr>
<tr>
<td>Mesure onde R aVL (mm)</td>
<td></td>
<td></td>
<td></td>
<td>0.51</td>
</tr>
<tr>
<td>- < 9</td>
<td>93 (76.2)</td>
<td>66 (78.6)</td>
<td>30 (71.4)</td>
<td></td>
</tr>
<tr>
<td>- ≥ 9</td>
<td>30 (23.8)</td>
<td>18 (21.4)</td>
<td>12 (28.6)</td>
<td></td>
</tr>
<tr>
<td>Age (années)</td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>- < 51</td>
<td>53 (42.1)</td>
<td>37 (44)</td>
<td>30 (71.4)</td>
<td></td>
</tr>
<tr>
<td>- ≥ 51</td>
<td>73 (57.9)</td>
<td>47 (56)</td>
<td>12 (28.6)</td>
<td></td>
</tr>
<tr>
<td>PA systolique 24h (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>- < 79</td>
<td>57 (20.9)</td>
<td>43 (55.1)</td>
<td>14 (41.2)</td>
<td></td>
</tr>
<tr>
<td>- ≥ 79</td>
<td>55 (49.1)</td>
<td>35 (44.9)</td>
<td>22 (58.8)</td>
<td></td>
</tr>
<tr>
<td>PA systolique nocturne (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>- < 138</td>
<td>79 (70.5)</td>
<td>57 (73.1)</td>
<td>22 (64.7)</td>
<td></td>
</tr>
<tr>
<td>- ≥ 138</td>
<td>33 (29.5)</td>
<td>21 (26.9)</td>
<td>12 (35.3)</td>
<td></td>
</tr>
<tr>
<td>Score STOP BANG ± DS</td>
<td></td>
<td></td>
<td></td>
<td>0.015</td>
</tr>
<tr>
<td>- < 5</td>
<td>70 (56.9)</td>
<td>54 (65.1)</td>
<td>16 (40)</td>
<td></td>
</tr>
<tr>
<td>- ≥ 5</td>
<td>53 (43.1)</td>
<td>29 (34.9)</td>
<td>24 (60)</td>
<td></td>
</tr>
</tbody>
</table>

Données exprimées en

IMC : indice de masse corporelle ; PA : pression artérielle
Les 5 variables (IMC, mesure onde R en aVL, âge, pression artérielle systolique 24h, pression artérielle systolique nocturne) ayant une p-valeur > 0.2 après discrétisation ont été retirées de la liste des 12 variables retenues dans le modèle complet avant sélection automatique. Il reste ainsi 7 variables :

- la présence d’un diabète
- la présence d’une coronaropathie
- le périmètre abdominal
- le tour de cou
- le diamètre sinus aortique
- le score stop bang
- la pression artérielle diastolique nocturne

Tout comme précédemment, le modèle complet est construit sur les 88 patients ne présentant aucune valeur manquante sur les 7 variables testées.
Le modèle réduit obtenu après sélection automatique est composé des 4 variables suivantes :

Tableau 11 : Modèle réduit obtenu par sélection des variables du modèle de régression logistique binaire après discrétisation des données quantitatives

<table>
<thead>
<tr>
<th>Variable retenue</th>
<th>OR</th>
<th>IC 95% (OR)</th>
<th>p-valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence diabète</td>
<td>6.67</td>
<td>[1.68-30.5]</td>
<td>0.009</td>
</tr>
<tr>
<td>Présence coronaropathie</td>
<td>4.68</td>
<td>[0.96-28.8]</td>
<td>0.068</td>
</tr>
<tr>
<td>Périmètre abdominal ≥ 108 cm</td>
<td>4.35</td>
<td>[1.43-15.32]</td>
<td>0.014</td>
</tr>
<tr>
<td>Diamètre sinus aortique ≥ 33.2 mm</td>
<td>4.63</td>
<td>[1.54-15.83]</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Parmi les 4 variables présentes dans le modèle réduit, 3 sont liées en multivarié aux groupes :

- la **présence d’un diabète** : les patients présentant un diabète ont 6.67 fois plus de risque de faire partie du groupe d’IAH élevé (p = 0.009)

- le **périmètre abdominal** : les patients présentant un périmètre ≥ 108 ont 4.35 fois plus de risque de faire partie du groupe d’IAH élevé (p = 0.014)

- le **diamètre sinus aortique** : les patients présentant un diamètre ≥ 33.2 ont 4.63 fois plus de risque de faire partie du groupe d’IAH élevé (p = 0.009)

La présence d’une **coronaropathie**, proche du seuil de 5% dans le modèle réduit, puisque conservée par la sélection automatique, participe également aux performances du modèle, et est à utiliser pour prédir le groupe d’IAH d’un nouveau patient.
Les performances du modèle sont les suivantes :

Figure 3 : Courbe ROC du modèle réduit obtenu par sélection des variables du modèle de régression logistique binaire après discrétisation des données quantitatives

La courbe ROC est représentée ci-dessous. L'aire sous la courbe ROC est plus faible après discrétisation, mais reste excellente (0.88 vs 0.8). La sensibilité n’est pas modifiée (72%), mais la spécificité passe de 88% à 73%.

DISCUSSION

I. Contexte

Notre étude a pour but d'identifier parmi les éléments du quotidien du cardiologue ceux qui vont permettre d'affiner les diagnostics du SAHOS. L'onde R en AVL sur l'électrocardiogramme et la taille des sinus aortiques étaient les deux éléments importants de ce travail.

Le dépistage du syndrome d'apnées-hypopnées obstructives du sommeil dans le cadre d'une population de patients hypertendus nécessite d'être affiné, car la présence d'un SAHOS est fréquente et constitue un véritable enjeu de santé publique.

Le SAHOS est une pathologie présentant de nombreuses co-morbidités, notamment cardio-vasculaires et métaboliques, entraînant une morbi-mortalité importante.

Le diagnostic de SAHOS est basé sur un faisceau d'arguments cliniques peu spécifiques, ainsi que sur des scores élaborés afin d'étayer les suspicions. La méta-analyse de Qaseem et al. montre que les différentes échelles d'aides au diagnostic obtenaient des sensibilités et des spécificités très variables selon les
études, ne faisant pas d'elles des outils fiables ni discriminants pour le diagnostic ou sa sévérité.

Le SAHOS est actuellement défini comme un enjeu économique et sanitaire majeur d'après la Haute Autorité de Santé. La Commission nationale d'évaluation des dispositifs médicaux et des technologies de santé avait rendu un rapport en 2014 concernant la place des dispositifs médicaux dans la prise en charge du SAHOS et recommandait de traiter les patients présentant un SAHOS modéré ou sévère (IAH ≥ 15), associé à trois symptômes parmi les suivants : somnolence diurne, ronflements sévères et quotidiens, sensation d’étouffement ou de suffocation pendant le sommeil, fatigue diurne, nycturie, céphalées matinales.

Le SAHOS se diagnostiquant grâce aux données de l’enregistrement polysomnographique, un examen long, couteux, nécessitant une hospitalisation programmée, il paraît licite et nécessaire de pouvoir discriminer les SAHOS modérés et sévères des SAHOS légers dès la suspicion. Cette distinction permettrait de prioriser l'accès à la polygraphie et à la polysomnographie et ainsi dépister en priorité les patients nécessitant un traitement.

Cette étude cherchait donc à élaborer un score permettant de discerner deux groupes, un avec un IAH ≥ 15/H et l'autre avec un IAH < 15/H.

Le SAHOS étant la cause la plus fréquente d'hypertension artérielle réfractaire (12), il a été décidé de réaliser cette étude au sein d'une population de patients hypertendus.
Le but de cette étude était donc de déterminer des critères permettant d’affiner le diagnostic des SAHOS sévères parmi les éléments simples et disponibles que sont l’électrocardiogramme, l’ETT et la MAPA, qui font le quotidien du cardiologue.

La prévalence du SAHOS est très importante dans les populations de patients hypertendus (49). Ce fait est reconnu depuis longtemps. La difficulté est de discriminer les patients présentant un SAHOS modéré ou sévère justifiant d’une prise en charge. Dans cette population de patients obèses et hypertendus, la prévalence de SAHOS est très élevée car le diagnostic de SAHOS est porté dès que les patients ont un IAH supérieur ou égal à 5/H. Une grande partie des patients présente un SAHOS qui n’a pas de conséquence clinique dans leur vie quotidienne ni de sur-risque à présenter de problème cardiovasculaire. Chez les patients ayant un BMI>35Kg/m², la prévalence du SAHOS est de 84% lorsque l’on utilise un IAH de 5/H, de 7% lorsque l’on utilise un IAH de 15/H et de 2% lorsque l’on utilise un IAH de 30/H (50).

Les scores cliniques classiquement et historiquement utilisés en pratique courante comme l’échelle d’Epworth pour les critères d’endormissement et le questionnaire de Berlin pour le ronflement, ont montré depuis longtemps leurs limites (35). Le questionnaire STOP BANG, qui associe des questions cliniques et des mesures anthropométriques comme le périmètre abdominal et le tour de cou, semble être le plus intéressant à utiliser dans cette situation. Les données disponibles de sensibilité et de spécificité restent relativement médiocres pour les patients avec un score de STOP BANG bas.
Notre étude permet d’apporter des éléments de réflexion supplémentaires pour aider à affiner le dépistage de SAHOS chez les patients les moins suspects lors de notre approche clinique, anamnestique et anthropométrique.

Le questionnaire STOP BANG, s’il a montré sa supériorité par rapport aux autres scores cliniques, a été développé initialement dans le but de stratifier un risque opératoire de patients avant une intervention chirurgicale. Ce questionnaire a ensuite été étudié dans de nombreuses populations à risque de présenter un SAHOS, comme les chauffeurs de bus, les patients insuffisants rénaux et même en médecine générale. Sa spécificité reste relativement médiocre, il est donc important de trouver des marqueurs prédictifs de présenter un SAHOS nécessitant un traitement spécifique afin d’affiner le diagnostic de SAHOS et d’avoir un réel impact en termes de santé publique. Notre travail s’inscrit dans cette démarche en utilisant des éléments simples, peu coûteux et disponibles dans les éléments de notre consultation. La création de nouveaux scores intégrant les critères cliniques et anamnestiques que nous avons objectivé parait donc importante à valider à plus grande échelle.

II. Comparaison des résultats à la littérature

Le premier modèle construit dans cette étude possédait une sensibilité (72%) et une spécificité correctes (88%), indicateurs de bonne fiabilité. Les données présentes dans ce modèle sont des valeurs cliniques et paracliniques facilement accessibles et assez reproductibles, bien que le
diamètre du sinus aortique et la mesure du tour de taille soient opérateur dépendant.

Certaines données telles que la présence d’une dyslipidémie, la présence d’une coronaropathie et la mesure de l’onde R en AvL avaient obtenu des résultats s’approchant du seuil de significativité. Un échantillon de taille plus importante aurait peut-être permis à ces éléments de devenir significatifs.

Le second modèle possédait une sensibilité de 72% et une spécificité de 88%. Ici aussi, les 4 variables utilisées sont facilement accessibles et reproductibles, avec les mêmes limites concernant le périmètre abdominal et le diamètre du sinus aortique, opérateur-dépendants.

L’électrocardiogramme accompagne toutes les consultations de cardiologie. Cet examen et les données qui en découlent ne présentent pas de surcoût économique dans la population des patients hypertendus. Le paramètre le plus utile qui émane de notre analyse semble être l’onde r en aVL. Ce marqueur peu connu de la population médicale a pourtant montré un grand intérêt dans le dépistage de l’hypertrophie ventriculaire gauche électrique. Ce marqueur présente en plus deux avantages majeurs : ne pas être influencé par l’obésité car mesuré dans les dérivations frontales, et avoir une influence pronostique péjorative indépendamment de la présence d’une HVG électrique. Ces deux avantages ne sont pas retrouvés pour les deux autres marqueurs les plus reconnus et les plus utilisés que sont l’indice de Sokolow et l’indice de Cornell. Il apparaît important d’évaluer ce paramètre dans la population d’hypertendus en surpoids qui est la plus exposée au risque de présenter un SAHOS sévère.
De nombreuses études ont montré que la présence du SAHOS était en lien direct avec l’obésité et que la prévalence des SAHOS sévères étaient plus fréquente dans les populations avec un IMC élevé (51). Dans notre travail, malgré un IMC médian très élevé, le périmètre abdominal garde tout son intérêt. Il est d’autant plus important qu’il ne coûte rien et est facilement accessible par tous les cliniciens.

Le dépistage de l’anévrisme de l’aorte thoracique fait partie des éléments de base dans la réalisation de l’ETT. Cet élément est assez simple à recueillir. La taille de l’aorte ascendante a déjà été décrite comme étant plus élevée dans les populations de patients présentant un SAHOS (52), ceci étant en relation avec l’IAH et l’hypoxémie qui accompagnent les SAHOS chez les patients obèses. Les mécanismes qui accompagnent l’augmentation de la taille de l’aorte sont plus complexes qu’un simple ratio avec l’augmentation de la pression artérielle chez les patients présentant un SAHOS. L’augmentation de l’hyperactivité sympathique et les variations fréquentes et brutales de la pression artérielle en cas de SAHOS sont reconnues comme des éléments péjoratifs. La présence d’un ronflement a également montré son influence sur l’augmentation de la taille de l’aorte ascendante et descendante. Le SAHOS a même montré son influence péjorative dans l’expression des pathologies aortiques compliquées comme la dissection aortique (19).

Il n’est pas surprenant de retrouver une proportion importante de patients diabétiques dans notre population en surpoids avec une hypertension sous polythérapié. Un élément à noter, l’importance du diabète dans cette démarche
d’affinement des données diagnostiques. Le SAHOS s’accompagne de désordres métaboliques importants. Les mécanismes physiopathologiques entre le diabète et le SAHOS sont nombreux et encore mal élucidés (30). Une étude française a montré que le diabète était plus fréquent dans les populations de patients avec SAHOS et ceci indépendamment de l’âge et de l’obésité (53).

De même, les patients coronariens sont connus pour être surexposés au SAHOS. Le SAHOS aggrave le développement de l’athérosclérose coronaire mais va également être responsable de la décompensation de la coronaropathie aigüe. Ceci est en lien probablement avec l’hypoxémie nocturne qui peut décompenser des accidents coronaires et également par le biais de l’augmentation de l’hyperactivité sympathique. Le dépistage de la population des coronariens est d’autant plus important que le pronostic de la coronaropathie semble aggravée par la présence d’un SAHOS.

III. Limites

Cette étude doit être interprétée en fonction de ses limites, en particulier le nombre relativement restreint de patients inclus, ayant pour conséquence une perte de puissance.

Les données du diagnostic du SAHOS n’ont pas été réalisées de façon standardisée au sein d’un même laboratoire de sommeil. L’Apnéalink® ne prenant pas en compte les mouvements abdominaux, le caractère obstructif de des syndromes d’apnées du sommeil dépistés par cette méthode dans notre étude ne peut être confirmé.
CONCLUSION

Le syndrome d’apnées du sommeil est une pathologie fréquente considérée comme un problème de santé publique. Les outils validés aidant au dépistage possèdent une sensibilité et une spécificité médiocres ne permettant pas de discriminer correctement les patients lors de la suspicion. Des facteurs métaboliques ou cardio-vasculaire, notamment les données de la pression artérielle, de l’électrocardiogramme et de l’échographie cardiaque pourraient permettre d’affiner la suspicion clinique de SAHOS et ainsi discriminer les patients nécessitant un traitement d’emblée. Des études avec des cohortes plus importantes pourraient permettre de créer de nouveaux scores de meilleure qualité que ceux déjà existants.
REFERENCES BIBLIOGRAPHIQUES

ANNEXES

Annexe 1 : Score d’Epworth (55)

Échelle de Somnolence d’Epworth

La somnolence est la propension plus ou moins irrésistible à s’endormir si l’on est pas stimulé.

(Nb. Ce sentiment est très distinct de la sensation de fatigue qui parfois oblige à se reposer)

Le questionnaire suivant, qui sert à évaluer la somnolence subjective, est corréllé avec les résultats objectifs recueillis par les enregistrements du sommeil.

<table>
<thead>
<tr>
<th>Prénom :</th>
<th>Nom :</th>
<th>Date de naissance :</th>
</tr>
</thead>
</table>

Date du test : __________________________ Ronflement? oui Non......

Vous arrive-t-il de somnoler ou de vous endormir (dans la journée) dans les situations suivantes :
Même si vous ne vous êtes pas trouvé récemment dans l’une de ces situations, essayez d’imaginer comment vous réagiriez et quelles seraient vos chances d’assoupissement.

- note 0 : si c’est exclu. «Il ne m’arrive jamais de somnoler: aucune chance,
- note 1 : si ce n’est pas impossible. «Il y a un petit risque»: faible chance,
- note 2 : si c’est probable. «Il pourrait m’arriver de somnoler» : chance moyenne,
- note 3 : si c’est systématique. «Je somnolerais à chaque fois» : forte chance.

- Pendant que vous êtes occupé à lire un document ... 0 1 2 3
- Devant la télévision ou au cinéma .. 0 1 2 3
- Assis inactif dans un lieu public (salle d’attente, théâtre, cours, congrès …) 0 1 2 3
- Passager, depuis au moins une heure sans interruptions, d’une voiture ou d’un transport en commun (train, bus, avion, métro …) .. 0 1 2 3
- Allongé pour une sieste, lorsque les circonstances le permettent ... 0 1 2 3
- En position assise au cours d’une conversation (ou au téléphone) avec un proche.............. 0 1 2 3
- Tranquillement assis à table à la fin d’un repas sans alcool .. 0 1 2 3
- Au volant d’une voiture immobilisée depuis quelques minutes dans un embouteillage 0 1 2 3

Total (de 0 à 24):

- En dessous de 8: vous n’avez pas de dette de sommeil.
- De 9 à 14: vous avez un déficit de sommeil, revoyez vos habitudes.
- Si le total est supérieur à 15: vous présentez des signes de somnolence diurne excessive. Consultez votre médecin pour déterminer si vous êtes atteint d’un trouble du sommeil. Si non, pensez à changer vos habitudes.
Annexe 2 : Score de Berlin

Questionnaire de Berlin

Taille (m) _____ Poids (kg) _____ Âge _____ Homme / Femme.

CATÉGORIE 1

1. Ronflez-vous?
 - Oui
 - Non
 - Ne sais pas

2. Votre ronflement est :
 - Légèrement plus fort que la respiration
 - Fort comme la parole
 - Plus fort que la parole
 - S'entend d'une pièce voisine

3. Fréquence du ronflement
 - Presque tous les jours
 - 1-2 fois/semaine
 - 1-2 fois/ mois
 - Jamais

4. Votre ronflement gêne-t-il les autres?
 - Oui
 - Non
 - Ne sais pas

5. A-t-on remarqué que vous arrêtez de respirer pendant votre sommeil?
 - Presque tous les jours
 - 1-2 fois/semaine
 - 1-2 fois/ mois
 - Jamais

CATÉGORIE 2

6. Etes-vous souvent fatigué après avoir dormi?
 - Presque tous les jours
 - 1-2 fois/semaine
 - 1-2 fois/month
 - Jamais

7. À l'état éveillé, vous sentez-vous fatigué?
 - Presque tous les jours
 - 1-2 fois/semaine
 - 1-2 fois/month
 - Jamais

8. Vous êtes-vous déjà assoupi en conduisant?
 - Oui
 - Non

9. Avec quelle fréquence cela se produit-il?
 - Presque tous les jours
 - 1-2 fois/semaine
 - 1-2 fois/month
 - Jamais

CATÉGORIE 3

10. Êtes-vous hypertendu?
 - Oui
 - Non
 - Ne sais pas
Annexe 3 : Score STOP BANG (50)

S Snoring : Ronflements importants
T Tired : Asthénie/somnolence diurne
O Observed apnea : apnées durant le sommeil
P Pressure : HTA

B BMI : IMC > 35 kg/m²
A Age > 50 ans
N Neck : Tour de cou > 40 cm
G Gender : Sexe masculin
AUTEUR : Nom : GARY
Prénom : Aurore

Date de Soutenance : Jeudi 19 octobre 2017

Titre de la Thèse : Apport de la mesure ambulatoire de pression artérielle des 24 heures, de l'électrocardiogramme et de l'échographie cardiaque dans le dépistage du syndrome d'apnées du sommeil dans une population de patients hypertendus.

Thèse – Médecine – Lille 2017

Cadre de classement : Médecine vasculaire

DES + spécialité : Médecine générale + médecine vasculaire

Mots-clés : Syndrome d’apnées-hypopnées obstructives du sommeil, dépistage, hypertension artérielle, facteurs prédictifs.

Résumen :

Introduction : Le syndrome d’apnées-hypopnées obstructives du sommeil (SAHOS) est une pathologie fréquente, et représente le premier facteur de résistance de l'hypertension artérielle. Le SAHOS est associé, proportionnellement à sa gravité, à une surmortalité cardio-vasculaire surtout en cas de somnolence diurne. La suspicion clinique du SAHOS repose sur des questionnaires ne permettant pas de distinguer les SAHOS justifiant d'un traitement. L'objectif de cette étude est d'identifier des paramètres permettant d'affiner le diagnostic de SAHOS modérés à sévères dans une population de patients hypertendus.

Méthode : Etude prospective menée de juillet 2015 à août 2017 dans le service de médecine vasculaire et HTA du CHRU de Lille dans une population de patients ayant une justification clinique de dépistage du SAHOS. Les données recueillies comprenaient des paramètres clinico-biologiques, les questionnaires d'Epworth, de Berlin et du STOP-BANG, des paramètres électrocardiographiques et échographiques, et un dépistage de SAHOS.

Résultats : 126 patients ont été inclus, séparés en 2 groupes suivant la présence d'un IAH≥15/H. L'analyse multivariée a permis de construire un modèle composé de 7 variables significativement différentes dans les deux groupes : la présence d'un diabète (OR=9.88, IC[2.15-54.6], p=0.05), le périmètre abdominal (OR=1.1, IC[1.02-1.2], p=0.01), le diamètre du sinus aortique (OR=1.12, IC[0.99-1.29], p=0.09), l'IMC (OR=0.88, IC[0.73-1.04], p=0.14), la pression artérielle systolique nocturne (OR=1.09, IC[0.99-1.14], p=0.12), la pression artérielle systolique moyenne sur 24h (OR=0.96, IC[0.91-1.007], p=0.11), le score STOP BANG (OR=0.71, IC[1.07-2.94], p=0.03). Ce modèle possède une sensibilité de 72% et une spécificité de 88%, pour dépister les patients à risque de SAHOS modérés à sévères.

Conclusion : La prévalence et l’incidence grandissantes du SAHOS en font un problème de santé publique nécessitant de définir des critères permettant d'affiner son diagnostic. Les troubles respiratoires nocturnes en lien avec l'obésité s'accompagnent d'atteintes métaboliques et cardiovasculaires qu'il faudra prendre en considération pour définir une population de patients hypertendus à risque de présenter un SAHOS justifiant une prise en charge. Les éléments utilisés quotidiennement en cardiologie comme la mesure ambulatoire de la pression artérielle et l'échographie cardiaque doivent donc être évalués pour affiner le diagnostic de SAHOS.

Composition du Jury :
Président : Madame le Professeur Christelle MONACA
Assesseurs : Monsieur le Professeur David MONTAIGNE
Monsieur le Docteur Jean-Louis EDME
Madame le Docteur Stéphanie FRY
Monsieur le Docteur Pascal DELSART