Dosage des peptides amyloïdes Aβ1-42 et Aβ1-40 dans le liquide cérébro-spinal et intérêt de leur rapport dans le diagnostic de la maladie d'Alzheimer

Présentée et soutenue publiquement le Lundi 16 février 2015 à 18h
au Pôle Formation
Par Damien Amouyel

JURY
Président :
Monsieur le Professeur Bernard Sablonnière
Assesseurs :
Madame le Professeur Florence Pasquier
Monsieur le Professeur Thierry Brousseau
Madame le Docteur Stéphanie Bombois
Directeur de Thèse :
Madame le Docteur Susanna Schraen
Avertissement

La Faculté n'entend donner aucune approbation aux opinions émises dans les thèses : celles-ci sont propres à leurs auteurs.
Liste des abréviations

<table>
<thead>
<tr>
<th>Abbréviation</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Acide aminé</td>
</tr>
<tr>
<td>Aβ1-40</td>
<td>Peptide béta amyloïde de 40 acides aminés</td>
</tr>
<tr>
<td>Aβ1-42</td>
<td>Peptide béta amyloïde de 42 acides aminés.</td>
</tr>
<tr>
<td>AICD</td>
<td>Domaine intracellulaire amyloïde</td>
</tr>
<tr>
<td>APP</td>
<td>Précursore de la protéine amyloïde</td>
</tr>
<tr>
<td>AUC</td>
<td>Aire sous la courbe</td>
</tr>
<tr>
<td>BACE1</td>
<td>Beta site APP-Cleaving Enzyme 1</td>
</tr>
<tr>
<td>BHE</td>
<td>Barrière hémato-encéphalique</td>
</tr>
<tr>
<td>CMRR</td>
<td>Centre mémoire de recherche et de ressources</td>
</tr>
<tr>
<td>CNIL</td>
<td>Commission nationale de l’informatique et des libertés</td>
</tr>
<tr>
<td>DCL</td>
<td>Démence à corps de Lewy</td>
</tr>
<tr>
<td>DFT</td>
<td>Démence fronto temporale</td>
</tr>
<tr>
<td>DNF</td>
<td>Dégénérescence neurofibrillaire</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>HPN</td>
<td>Hydrocéphalie à pression normale</td>
</tr>
<tr>
<td>IATI</td>
<td>Innotest Amyloïd Test Index</td>
</tr>
<tr>
<td>IDC</td>
<td>Intervalle de confiance à 95%</td>
</tr>
<tr>
<td>IRM</td>
<td>Imagerie par résonnance magnétique</td>
</tr>
<tr>
<td>IWG</td>
<td>International Working Group</td>
</tr>
<tr>
<td>LCS</td>
<td>Liquide cérébro-spinal</td>
</tr>
<tr>
<td>LRP-1</td>
<td>Low density Lipoprotein Receptor-related Protein-1</td>
</tr>
<tr>
<td>MA</td>
<td>Diagnostic de Maladie d’Alzheimer</td>
</tr>
<tr>
<td>MCI</td>
<td>Mild Cognitive Impairment</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix-métalloprotéinases</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini mental state examination</td>
</tr>
<tr>
<td>NEP</td>
<td>Neprilysine</td>
</tr>
<tr>
<td>NIA-AA</td>
<td>National Institute on Aging-Alzheimer’s Association</td>
</tr>
<tr>
<td>NMA</td>
<td>Diagnostic Non évocateur de Maladie d’Alzheimer</td>
</tr>
<tr>
<td>P-Tau</td>
<td>Protéine Tau phosphorylée en position 181</td>
</tr>
<tr>
<td>PL</td>
<td>Ponction lombaire</td>
</tr>
</tbody>
</table>
PLM Paris Lille Montpellier
TEP-FDG Tomographie par émission de positons au fluorodésoxyglucose
PSP Paralysie supranucléaire progressive
RAGE Receptor for Advanced Glycation End products
ROC Receiver operating characteristic
Se Sensibilité
SLA Sclérose latérale amyotrophique
Sp Spécificité
Tau Protéine Tau totale
Résultats

Introduction
I. La maladie d’Alzheimer .. 3
II. Le métabolisme cérébral du peptide amyloïde 8
 A. La synthèse du peptide amyloïde 8
 B. La clairance du peptide amyloïde 10
 C. L’agrégation du peptide amyloïde 11
III. Le diagnostic biologique ... 13
 A. La phase pré-analytique .. 13
 B. La phase analytique ... 15
 C. La phase post-analytique 16
IV. Objectif de la thèse .. 19

Matériaux et méthodes ... 20
I. Population d’étude .. 20
 A. La cohorte PLM (Paris Lille Montpellier) 20
 B. Critères d’inclusion .. 20
 C. Critères d’exclusion ... 21
 D. Variables étudiées .. 21
II. Matériel .. 22
 A. Phase pré-analytique ... 22
 B. Phase analytique ... 23
 1. Trousse de dosage d’Aβ1-42 23
 2. Trousse de dosage de Tau 24
 3. Trousse de dosage de P-Tau 24
 4. Trousse de dosage d’Aβ1-40 24
III. Méthodes ... 25
 A. Valeurs seuils des marqueurs biologiques 25
 B. Interprétation des profils biochimiques 25
 C. Adéquation entre profil biochimique et diagnostic clinique .. 27
IV. Analyses statistiques .. 27

Résultats .. 29
I. Analyse de la population .. 29
 A. Description de la population étudiée 29
 B. Comparaison des patients selon leur diagnostic 30
 C. Comparaison des patients selon le centre et le diagnostic clinique .. 31
 D. Interprétation initiale du test en fonction des marqueurs biologiques
 usuels : Aβ1-42, Tau et P-Tau 32
 E. Comparaison des patients selon leur profil biochimique .. 33
II. Détermination statistique de la valeur seuil du rapport Aβ1-42/Aβ1-40 .. 35
III. Nouvelle interprétation des profils discordants en utilisant le rapport Aβ1-42/Aβ1-40 .. 37
IV. Arbre récapitulatif ... 38
Discussion
I. Principaux résultats
II. Interprétation des résultats
 A. La cohorte
 B. Le rapport Aβ1-42/Aβ1-40
 1. Son intérêt pour le biologiste : augmenter l’informativité des profils biochimiques des marqueurs de la maladie d’Alzheimer
 2. Son intérêt pour le clinicien : aider à l’orienter sur la pose du diagnostic de la maladie d’Alzheimer
III. Limites de l’étude
IV. Points forts de l’étude
V. Perspectives
Conclusion
Références bibliographiques
Annexes
Annexe 1 : Fiche de traçabilité de prélèvement de LCS pour le dosage des marqueurs biologiques de la Maladie d’Alzheimer au CHRU de Lille
Annexe 2 : Anticorps utilisés pour la technique ELISA sandwich de Aβ1-42, Tau et P-Tau
RESUME

Contexte : Le diagnostic biologique de la maladie d'Alzheimer repose sur l'interprétation de trois marqueurs biologiques (Aβ1-42, Tau et P-Tau) dosés dans le liquide cérébro-spinal. Dans certains cas, les discordances de résultats entre ces marqueurs, rendent le test non informatif pour le clinicien. L'objectif de ce travail est d'étudier l'intérêt du dosage du peptide Aβ1-40 et son intégration dans le rapport Aβ1-42/Aβ1-40 pour améliorer l'informativité du diagnostic biologique de la maladie d'Alzheimer chez les patients dont le profil biochimique est discordant.

Méthode : L'étude a été réalisée sur les patients des centres mémoire de recherche et de ressources de Paris, Lille et Montpellier. Les quatre marqueurs biologiques ont été dosés par une technique ELISA selon un protocole standardisé entre les trois centres. Le diagnostic clinique a été posé indépendamment des résultats des dosages. La valeur seuil du rapport Aβ1-42/Aβ1-40 qui optimise la sensibilité et la spécificité a été calculée par une courbe ROC chez les patients dont le profil biochimique était discordant. Une nouvelle interprétation des profils discordants a été proposée en substituant Aβ1-42 par le rapport Aβ1-42/Aβ1-40.

Résultats : Sur les 456 patients de la cohorte, 242 (53%) avaient un diagnostic de maladie d'Alzheimer et 113 (24.8%) avaient un profil biochimique discordant. La valeur seuil du rapport Aβ1-42/Aβ1-40 était de 0.059 [0.057; 0.073] avec une aire sous la courbe ROC égale à 0.81. L'utilisation des trois marqueurs biologiques (rapport Aβ1-42/Aβ1-40, Tau et P-Tau) permettait de reclasser 83 (73.5%) des 113 profils biochimiques discordants en tests informatifs, dont 67 étaient bien classés en fonction du diagnostic clinique. Le nombre de tests informatifs est passé de 298 (65%) à 381 (83%), soit une augmentation de l'informativité de 18%.

Conclusion : Le rapport Aβ1-42/Aβ1-40 a donc un intérêt pour améliorer l'informativité du diagnostic biologique de la maladie d'Alzheimer lorsque les profils biochimiques des marqueurs du LCS sont discordants.
INTRODUCTION

La maladie d’Alzheimer est un enjeu majeur de santé publique. En effet, avec le vieillissement de la population lié à l’augmentation de l’espérance de vie, la prévalence de la maladie d’Alzheimer ne cesse de croître en France et dans le monde entier (1–3). En 2010, le nombre de personnes souffrant de maladie d’Alzheimer et de maladies apparentées en France était estimé à 996.000. Les prévisions pour l’horizon 2030 sont alarmistes avec une augmentation de 75,7%, soit environ 1.750.000 patients atteints (2). La démence est un syndrome d’apparition progressive, relatif à une pathologie cérébrale, touchant les fonctions corticales supérieures comme la mémoire, le langage, ou l’orientation et associée à des troubles comportementaux et émotionnels (4). Dans la majorité des cas, ce syndrome touche les sujets âgés de plus de 65 ans (3,5). Parmi tous les types de démences, la maladie d’Alzheimer est la plus fréquente (50 et 75% des cas), suivie par les démences vasculaires (20 à 30%), puis enfin dans une proportion inférieure à 10%, on trouve des maladies apparentées à la maladie d’Alzheimer comme les dégénérescences lobaires fronto-temporales et la démence à corps de Lewy (1). Plusieurs de ces pathologies peuvent même survenir de façon concomitante, notamment les lésions cérébrovasculaires ou les corps de Lewy qui peuvent s’associer à une composante neuro-dégénérative comme la maladie d’Alzheimer, on parlera alors de démence mixte (1,6).
I. La maladie d’Alzheimer

La maladie d’Alzheimer est une maladie neuro-dégénérative touchant principalement le sujet âgé. Si son étiologie reste encore largement inconnue, les aspects clinico-biologiques de cette affection sont de mieux en mieux connus. En effet, de nombreuses études ont montré que l’histoire naturelle de la maladie d’Alzheimer se décompose en trois grandes phases.

Il existe, tout d’abord, une phase silencieuse préclinique au cours de laquelle les lésions cérébrales vont apparaître progressivement pendant une voire plusieurs dizaines d’années, sans plainte mnésique particulière de la part du patient (7–9). Puis au fur et à mesure de la propagation de ces lésions dans le cerveau, vont apparaître les premiers signes cliniques, c’est la phase prodromale. Elle est typiquement caractérisée par un trouble cognitif léger ou mild cognitive impairment (MCI), défini comme une atteinte d’au moins une des fonctions cognitives sans retentissement sur les activités quotidiennes, repérée par le patient lui même ou par son entourage (10). Enfin, l’étendue des lésions va conduire irrémédiablement le patient vers la dernière phase de la maladie d’Alzheimer, celle de la démence. Cette dernière est décrite comme l’association de troubles cognitifs avec des modifications psycho-comportementales suffisamment importantes pour entraîner une perte d’autonomie dans les actes de la vie quotidienne. La survenue de cette démence est progressive et ne doit pas pouvoir être expliquée par une autre étiologie organique ou psychique. Elle entraîne une rupture avec l’état antérieur du patient et retentit sur ses activités quotidiennes l’entraînant vers une perte d’autonomie (11). C’est d’ailleurs à ce stade tardif d’évolution de la maladie que la plupart des diagnostics sont posés. En effet, les signes cliniques et neuropsychologiques antérieurs à la phase de démence peuvent être confondus avec le vieillissement normal du cerveau.
(12). Par conséquent, il a fallu mettre au point des critères paracliniques capables d’orienter le clinicien vers le diagnostic de la maladie d’Alzheimer à un stade plus précoce : l’imagerie du cerveau et les marqueurs des fluides biologiques (10,11,13).

Parmi les examens d’imagerie du cerveau, l’imagerie par résonnance magnétique (IRM) permet de mettre en évidence une atrophie des structures temporales internes telles que l’hippocampe, ainsi qu’une atrophie bipariétale postérieure. La tomographie par émission de positons au fluorodésoxyglucose (TEP-FDG) met en évidence une diminution du métabolisme du glucose dans les régions temporo-pariétales bilatérales. En ce qui concerne les marqueurs biologiques dosés dans le liquide cérébro-spinal (LCS), trois d’entre eux ont été identifiés comme une aide au diagnostic de la maladie d’Alzheimer : la diminution de la concentration en peptide béta amyloïde de 42 acides aminés (AA) (Aβ1-42) et l’augmentation des concentrations de la protéine Tau totale (Tau) et de la protéine Tau phosphorylée 181P (P-Tau) sont caractéristiques d’un profil biochimique de maladie d’Alzheimer. Les modifications de ces trois marqueurs biologiques du LCS sont à mettre en relation avec les lésions cérébrales caractéristiques de la maladie d’Alzheimer (14).

D’un point de vue histopathologique, ces lésions cérébrales sont de deux types (Figure 1) : le dépôt extracellulaire de plaques amyloïdes (ou plaques séniles) et la dégénérescence neurofibrillaire (DNF) (15). C’est la concomitance de ces deux anomalies qui pose le diagnostic de certitude de la maladie d’Alzheimer le plus souvent en post mortem après l’étude anatomopathologique des coupes de cerveau (16–19).

La DNF se définit comme la présence d’agrégats intraneuronaux, appelés neurofibrilles, essentiellement constitués de l’accumulation d’une protéine sous sa forme hyperphosphorylée, la protéine Tau. Indispensable au neurone, on retrouve cette protéine, composée de 352 à 441 AA, en grande quantité dans les régions du
Introduction

Figure 1 : Plaque amyloïde et dégénérescence neurofibrillaire. Il s'agit d'une coupe anatomopathologique de cerveau colorée par des techniques immunohistochimiques où coexistent les deux lésions cérébrales caractéristiques de la maladie d'Alzheimer : une plaque amyloïde (Amyloid) en bas à gauche et une image de dégénérescence neurofibrillaire en haut à droite (NFT). D'après (15)

cerveau impliquées dans la consolidation de la mémoire telles que l'hippocampe. À l'état physiologique, cette protéine participe à l'assemblage des microtubules qui confèrent au neurone son intégrité et jouent un rôle important dans les transports axonaux antérogrades et rétrogrades (20). La protéine Tau existe sous deux formes : une forme phosphorylée et une forme non phosphorylée. Dans la maladie d'Alzheimer, la forme phosphorylée prédomine de façon anormale suite à un phénomène d'hyperphosphorylation (Figure 2). Ce phénomène aura pour conséquence de diminuer l'affinité de la protéine pour les microtubules, et de favoriser leur agrégation sous forme de neurofibrilles (17,21). La perte de la stabilisation du neurone et la toxicité neuronale des neurofibrilles vont conduire au dysfonctionnement puis, à terme, à la destruction du neurone (22). Ainsi, le contenu du neurone sera-t-il relargué dans l'espace extracellulaire, augmentant, par conséquent, les concentrations en protéine Tau et P-Tau dans le LCS.
Figure 2 : Représentation schématique du mécanisme de formation de la dégénérescence neurofibrillaire. La protéine Tau (en violet) est représentée sur le microtubule avec un seul site de phosphorylation (boule rose). Sous l’action de différentes kinases (GSK-3β, Cdk5) la protéine va subir une hyperphosphorylation entraînant une déstabilisation des microtubules. Les protéines vont s’agréger entre elles pour former les neurofibrilles. D’après (17).

Les plaques amyloïdes sont les secondes lésions retrouvées dans le cerveau des patients atteints de la maladie d’Alzheimer. Elles sont constituées d’agrégats extracellulaires oligomériques d’une protéine appelée peptide amyloïde ou peptide Aβ. Ce peptide est issu d’une protéine, le précurseur de la protéine amyloïde (APP), transmembranaire, qui va subir des clivages enzymatiques successifs par l’action de différentes endoprotéases (Figure 3). Il en résulte la production de monomères de
peptide amyloïde de longueurs d’AA variables compris entre 37 et 49. Ce processus sera exposé en détail dans le chapitre suivant. Dans la maladie d’Alzheimer, les fragments à 42 AA pro-agrégeant vont s’oligomériser pour former les plaques séniles (17,23). Le peptide Aβ1-42, connu pour être neurotoxique et à l’origine de dysfonctions synaptiques (24,25), sera séquestré dans l’espace intercellulaire cérébral. Par conséquent, la concentration d’Aβ1-42 circulant dans le LCS va diminuer. Il s’agit de ce peptide amyloïde auquel nous allons nous intéresser dans cette thèse.

Figure 3 : Représentation schématique du mécanisme de formation des plaques amyloïdes. Le précurseur de la protéine amyloïde (APP), transmembranaire, est clivé par l’action successive de deux protéases (la β-sécrétase puis la γ-sécrétase) pour libérer dans l’espace extracellulaire le peptide amyloïde Aβ1-42. Ce dernier va s’agréger pour former les plaques amyloïdes.
II. Le métabolisme cérébral du peptide amyloïde

Le métabolisme du peptide amyloïde est une des voies les plus étudiées actuellement dans la compréhension de la maladie d'Alzheimer.

A. La synthèse du peptide amyloïde

Le peptide amyloïde provient du clivage séquentiel de l’APP. Cette protéine transmembranaire ubiquitaire, dont la taille varie entre 365 et 770 AA est codée par un gène situé sur le bras long du chromosome 21. Dans le cerveau, trois isoformes de l’APP prédominent. L’APP695 que l’on trouve principalement dans la membrane des neurones, et l’APP751 et 770 que l’on retrouve dans la membrane des astrocytes et des cellules gliales (26,27). L’APP des neurones, dont l’utilité est encore mal définie, possède une longue partie extracellulaire aboutissant à son extrémité N-terminale. Ce long domaine va être soumis à l’action de différentes protéases qui vont le cliver selon deux voies différentes : la voie non amyloïdogène et la voie amyloïdogène (Figure 4).

Figure 4 : Représentation schématique des deux voies de métabolisme de l’APP. La voie non amyloïdogène, sous l’action de l’α-sécrétase et de la γ-sécrétase, va libérer dans l’espace extracellulaire les fragments sAPPα et p3. La voie amyloïdogène, sous l’action de la β-sécrétase (BACE-1) et de la γ-sécrétase va libérer dans l’espace extracellulaire le fragment sAPPβ et le peptide amyloïde Aβ. D’après (17)
La voie non amyloïdogène débute par l’action d’une α-sécrétase. Elle va séparer l’APP en sAPPα extracellulaire et en c83 transmembranare qui lui même sera clivé par une γ-sécrétase pour donner le fragment p3 extracellulaire et le domaine intracellulaire amyloïde (AICD) (24,25,28–30). L’AICD va se diriger vers le noyau de la cellule pour réguler des phénomènes de transcription, tandis que le fragment p3, dont la fonction est encore mal définie, sera éliminé dans le LCS. Bien que son implication dans la maladie d’Alzheimer ne soit pas tranchée, le fragment p3 est incapable de s’oligomériser et donc de former par lui même les plaques séniles (31).

La voie amyloïdogène, quant à elle, est impliquée dans la fabrication du peptide β amyloïde présent dans les plaques. D’abord clivée par une β-sécrétase dénommée beta-site APP-cleaving enzyme 1 (BACE1), l’APP se divise en sAPPβ extracellulaire et en c99 transmembranare. Puis l’action d’une γ-sécrétase sur le c99, va relarguer dans l’espace extracellulaire le peptide β amyloïde et dans l’espace intracellulaire l’AICD. La zone de clivage de la γ-sécrétase va conditionner la taille finale du peptide amyloïde. En effet, à partir d’un clivage de départ aléatoire au 48e ou 49e AA, la γ-sécrétase va couper le c99 de façon séquentielle tous les 3 AA, conduisant à de multiples formes de peptides amyloïdes de longueur variable (Figure 5). A l’issue de la première série de clivage, les peptides fabriqués seront Aβ1-48, Aβ1-45, ou Aβ1-42, alors que pour la deuxième série, on obtiendra Aβ1-49, Aβ1-46, Aβ1-43 ou Aβ1-40. Les produits finaux de chaque chaîne, Aβ1-42 et Aβ1-40, sont quantitativement prédominants (25,32). Néanmoins, la synthèse d’Aβ1-40 est bien supérieure à celle d’Aβ1-42. Ainsi la voie de synthèse d’Aβ1-40 reflète-t-elle la production globale du peptide amyloïde.
Figure 5 : Clivage séquentiel de la γ-sécrétase. Le clivage par la γ-sécrétase commence en zone ε soit entre les AA 49 et 50, soit entre les AA 48 et 49. Elle va ensuite réaliser un clivage séquentiel tous les 3 AA jusqu’à atteindre la zone γ et s’arrêter soit entre les AA 40 et 41, soit entre les AA 42 et 43. D’après (32)

B. La clairance du peptide amyloïde

Comme pour n’importe quelle protéine, la production du peptide amyloïde va être contrebalancée par son élimination. Dans le cerveau, plusieurs mécanismes de clairance vont coexister : la dégradation par protéolyse, l’élimination par efflux au niveau la barrière hémato-encéphalique (BHE), et la diffusion dans le LCS (Figure 6). Ces mécanismes font partie du métabolisme normal du peptide amyloïde, hors contexte de maladie d’Alzheimer.

La dégradation par protéolyse est mediée par l’action de nombreuses protéases aux caractéristiques différentes (33). La plus connue et la plus étudiée est une zinc-métalloprotéase appelée Neprilysine (NEP). Cette protéase a un rôle particulier dans la dégradation du peptide Aβ1-42 (34,35) et Aβ1-40. On peut également en citer d’autres comme la BACE, la cathepsine, ou les Matrix-métalloprotéinases (MMP).
Ces enzymes dégradent le peptide amyloïde de façon irréversible et constitueraient autant de pistes pour un éventuel traitement de la maladie d’Alzheimer.

L’élimination par efflux au niveau de la BHE constitue la deuxième voie de clairance du peptide amyloïde. Contrairement à la dégradation par protéolyse, ce mécanisme ne détruit pas le peptide amyloïde mais le fait sortir du cerveau. Deux protéines vont réguler les transports transmembranaires: RAGE (Receptor for Advanced Glycation End products) et LRP-1 (Low density Lipoprotein Receptor-related Protein-1). Au niveau de la BHE, RAGE va faire entrer le peptide amyloïde dans le cerveau tandis que LRP-1 va le faire sortir (36,37).

La diffusion dans le LCS est la voie d’élimination qui nous intéresse le plus puisque c’est dans ce liquide que l’on dose les protéines pour établir le diagnostic biologique de la maladie d’Alzheimer. En effet, le rôle du LCS peut être assimilé à celui du système lymphatique, une sorte de station d’épuration des protéines. Cependant le mécanisme par lequel se font les échanges entre l’espace extracellulaire et le LCS reste encore mal connus. Quelques études suggèrent l’existence d’un flux péri-artériel de LCS au niveau de l’espace sous arachnoïdien où s’effectueraient des échanges avec le liquide interstitiel par l’intermédiaire de canaux hydriques AQP4 (38–40).

C. L’agrégation du peptide amyloïde

Lorsqu’il n’est pas éliminé du cerveau, le peptide amyloïde libre dans l’espace extracellulaire va pouvoir s’agréger et donc être à l’origine des plaques amyloïdes de la maladie d’Alzheimer. Comme vu précédemment, le peptide amyloïde existe sous plusieurs formes qui diffèrent selon le nombre d’AA qui le compose. Les propriétés agrégatives de chaque forme de peptide amyloïde sont très différentes. L’Aβ1-42 est la forme qui a la plus forte propension à s’agréger in vivo. C’est d’ailleurs pour cela
qu’elle représente le constituant majeur des plaques. Le processus de formation de ces agrégats n’est pas encore bien élucidé. Néanmoins, on sait que des monomères d’Aβ1-42 vont s’oligomériser entre eux ou s’hétérodémeriser avec d’autres formes comme l’Aβ1-40 ou l’Aβ1-38. A force de se combiner, les oligomères vont croître pour former de longs protofilaments responsables des dépôts fibrillaires de peptide amyloïde. Il a été décrit plusieurs types d’oligomères de peptide amyloïde (41). De nombreuses hypothèses, dont celle de la cascade amyloïde (42,43), suggèrent que, dans la maladie d’Alzheimer, ce phénomène d’agrégation pourrait être amplifié par l’accumulation du peptide amyloïde dans le cerveau suite à une altération avérée des processus de son élimination (44).

Figure 6 : Devenir du peptide amyloïde. Le peptide amyloïde va être éliminé du cerveau de 3 façons différentes. La dégradation par des protéases, le transport par efflux via la BHE et la diffusion dans le LCS. Il pourra également s’agréger dans la maladie d’Alzheimer.
III. Le diagnostic biologique

A. La phase pré-analytique

D’après la norme NF en ISO 15189 et l’article L 6211-2 du code de la santé publique, la phase pré-analytique est une série d’étapes avant l’analyse comprenant la demande d’analyse, la préparation du patient, le recueil des éléments cliniques pertinents, le prélèvement de l’échantillon biologique humain, son acheminement et sa conservation jusqu’au site de la phase analytique. Il s’agit de la phase la plus importante car elle conditionne la suite de la prise en charge des événements. De nombreux facteurs modifiables et contrôlables peuvent altérer la qualité du prélèvement et fausser le rendu des résultats.

Le LCS est un prélèvement précieux obtenu par une ponction lombaire (PL). Cet acte médical n’étant pas facile à réaliser, la PL peut devenir traumatique et être contaminée par du sang. Il faut éviter au maximum ce cas de figure, car la présence de sang peut interférer avec les protéines contenues dans le LCS et sous estimer
leur valeur. Cet impact peut être expliqué par le passage dans le LCS de protéases sanguines, dont les facteurs de coagulation, qui vont potentiellement dégrader les protéines contenues dans l’échantillon de LCS (48). Par ailleurs, une quantité minimale de 2 mL doit être prélevée pour réaliser la totalité des analyses et permettre la réalisation de contrôles en cas de problème analytique.

Le tube de recueil du LCS doit être choisi de façon rigoureuse. En effet, la matière plastique dont est fait le contenant peut adsorber sur ses parois les protéines impliquées dans la maladie d’Alzheimer, plus spécialement le peptide amyloïde, et donc sous estimer sa valeur réelle dans l’échantillon (49,50). La plupart des tubes du commerce sont composés de polypropylène, de polyéthylène ou de polystyrène. Selon Perret-Liaudet et al. (51), les tubes en polypropylène donnent les meilleurs résultats, notamment un en particulier, fait d’un copolymère associant polypropylène et polyéthylène, le Sarstedt® 62.610.201.

Une fois prélevé, le LCS doit subir une étape de centrifugation, au mieux dans les quatre heures suivant la ponction, afin d’éliminer en partie les éventuelles cellules présentes (hématies, leucocytes) pouvant relarguer leur contenu à la décongélation de l’échantillon.

Les conditions d’acheminement et de conservation doivent impérativement être respectées surtout si la distance entre le site préleveur et le site d’analyse ne permet pas une prise en charge rapide de l’échantillon. Un prélèvement maintenu à température ambiante se détériore rapidement. Au bout de 48h, la concentration en protéine Tau reste stable, alors que la concentration en Aβ1-42 diminue de 20% (52,53). Il faut donc adapter le mode de conservation avec le délai théorique d’acheminement des tubes au laboratoire exécutant l’analyse. Si ce délai est de moins de 48h, on privilégiera la mise à 4°C de l’échantillon, en revanche si ce délai est de plus de 48h, alors il faudra opter par une congélation à -80°C.
B. La phase analytique

D'après la norme NF en ISO 15189 et l'article L 6211-2 du code de la santé publique, la phase analytique correspond à l’analyse à proprement parler de tout ou partie de l’échantillon biologique comprenant une préparation éventuelle du spécimen (prétraitement, coloration…) jusqu’à obtention d’un résultat d’analyse généralement à l’aide d’un instrument de mesure analytique.

Pour le dosage des marqueurs biologiques utiles dans le diagnostic de la maladie d’Alzheimer, la technique la plus couramment utilisée en Europe est le dosage immuno-enzymatique de type sandwich appelé ELISA, enzyme-linked immunosorbent assay. Cette technique manuelle consiste en la détection d’une protéine par l’intermédiaire de deux anticorps spécifiques de régions antigéniques différentes de cette protéine à quantifier. Le fond du puits de réaction est recouvert d’une quantité connue d’anticorps dits de capture. Le liquide biologique est déposé dans le puits, et la protéine à doser va alors réagir avec l’anticorps de capture en formant une liaison antigène anticorps. Après plusieurs lavages, un deuxième anticorps, dit de détection, est ajouté dans le puits et va se lier à un deuxième site antigénique de la protéine. On dit alors que l’antigène est pris en « sandwich » entre l’anticorps de capture et l’anticorps de détection. Ce dernier a la particularité d’être couplé à un enzyme qui, en présence de son substrat, le transforme en produit de réaction détectable et mesurable par l’apparition d’une coloration. Cette réaction de révélation constitue la dernière étape de la technique. Ainsi, plus il y a d’anticorps fixés, plus la coloration mesurée par un lecteur de densité optique sera intense, et plus la concentration en protéine dans le liquide biologique sera importante (54).
C. La phase post-analytique

D’après la norme NF en ISO 15189 et l’article L 6211-2 du code de la santé publique, la phase post-analytique regroupe toutes les étapes qui suivent l’obtention du résultat de l’analyse, à savoir, le transfert des données, la mise en forme, l’interprétation, la validation, le compte rendu et la transmission des résultats.

L’interprétation des résultats représente l’élément principal de la phase post-analytique puisqu’il participe au diagnostic global du clinicien. Ce dernier attend une réponse claire et précise sur la présence ou non d’un profil biochimique du LCS compatible avec une maladie d’Alzheimer. Au regard des trois protéines dosées que sont Aβ1-42, Tau et P-Tau, le biologiste va interpréter les résultats et rendre plusieurs conclusions possibles :

- Les 3 marqueurs sont dans les normes physiologiques, le test est donc informatif. On conclura à un test négatif « Profil biochimique normal »
- Les 3 marqueurs sont dans les normes pathologiques, le test est donc informatif. On conclura à un test positif « Profil biochimique en faveur d’une maladie d’Alzheimer probable »
- Dans tous les autres cas de figures, lorsque seulement un ou deux marqueurs sont dans les normes pathologiques, on conclura à un test non informatif.

Ces tests non informatifs n’apportent pas une réponse biologique claire et contributive, au contraire ils constituent un frein au diagnostic pour le clinicien, qui ne peut alors inclure la biologie du LCS dans sa démarche diagnostique. Le rôle du biologiste, dans son souci d’obligation de moyens et de résultats, est d’essayer de minimiser le nombre de ces profils. Parmi ces tests non informatifs, une population particulière attire notre attention. Cette population est constituée de profils
biochimiques où on observe une discordance de résultats entre Aβ1-42, le marqueur du dépôt de plaque amyloïde et le couple Tau et P-Tau, les marqueurs de la dégénérescence neurofibrillaire. Nous pouvons dès lors, distinguer deux profils particuliers : le premier où Aβ1-42 est pathologique et Tau et P-Tau sont normaux que l’on nommera « Profil discordant 1 », le second où Aβ1-42 est normal et Tau et P-Tau sont pathologiques que l’on nommera « Profil discordant 2 » (Tableau 1).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests informatifs</td>
</tr>
<tr>
<td>Test négatif</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Test positif</td>
</tr>
<tr>
<td>Tests non informatifs</td>
</tr>
<tr>
<td>Profil discordant 1</td>
</tr>
<tr>
<td>Profil discordant 2</td>
</tr>
<tr>
<td>Autres profils</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Le « N » signifie Normal, alors que le « P » signifie Pathologique. Les autres profils ne seront pas étudiés dans cette thèse.

Afin de remédier à ces profils discordants, une équipe allemande est partie d’une observation simple : la production de peptide amyloïde n’est pas identique chez tous les individus. Ainsi y a-t-il des patients qui produisent de base une faible quantité de peptide amyloïde par rapport à la normale, des patients qui produisent de base une grande quantité de peptide amyloïde par rapport à la normale et des
patients qui produisent de base une quantité normale de peptide amyloïde (55). Wiltfang et al. ont alors émis l’hypothèse que les variations de concentrations d’Aβ1-42 mesurées dans le LCS ne seraient pas uniquement le reflet de l’agrégation du peptide amyloïde dans le cerveau mais également de sa production de base. Par conséquent, une concentration basse en Aβ1-42 pourrait être considérée à tort comme pathologique chez des patients sains puisqu’elle ne serait pas due à sa séquestration dans les plaques amyloïdes mais à sa faible production physiologique. A l’inverse, une concentration normale en Aβ1-42 pourrait être considérée à tort comme physiologique chez des patients atteints de la maladie d’Alzheimer dont la séquestration d’Aβ1-42 serait masquée par une forte production physiologique. Si cette hypothèse est vraie, alors un patient avec un profil biochimique discordant 1 aurait une concentration en Aβ1-42 faussement abaissée, tandis qu’un patient avec un profil biochimique discordant 2 aurait une concentration en Aβ1-42 faussement normale. L’intérêt est donc de trouver un nouveau paramètre capable de s’affranchir de cet effet « variation inter-individu de production de peptide amyloïde » pour reclasser correctement les profils biochimiques discordants en tests informatifs positifs et négatifs.

Nous avons mentionné dans le chapitre « Synthèse du peptide amyloïde » que Aβ1-40 est un marqueur qui reflète la production globale de peptide amyloïde, et que, contrairement à Aβ1-42, sa concentration n’est pas modifiée quantitativement de façon significative chez des patients atteints de la maladie d’Alzheimer. Cité dans de nombreuses publications (55–58), le rapport Aβ1-42/Aβ1-40, corrélé à la pathologie amyloïde, permettrait de supprimer cet effet production. En remplaçant la valeur de Aβ1-42 par ce rapport chez les patients ayant un profil biochimique discordant, on pourrait reconsidérer l’interprétation des marqueurs biologiques : pour
les profils discordants 1, un rapport supérieur à sa valeur seuil, donc considéré comme normal, reclassera le test en négatif (Aβ1-42 faussement pathologique), alors que pour les profils discordants 2, un rapport inférieur à sa valeur seuil, donc considéré comme pathologique, reclassera le test en positif (Aβ1-42 faussement normal). Dans les autres cas, le test restera non informatif.

Néanmoins, l’utilisation du rapport Aβ1-42/Aβ1-40 ne fait pas l’objet d’un consensus, ni d’une harmonisation de sa valeur seuil. On retrouve des valeurs différentes qui varient entre 0,11 à 0,05 (55,58,59). De ce fait, il nous paraît indispensable d’évaluer notre propre valeur seuil.

IV. Objectif de la thèse

Pour y arriver, nous réaliserons une analyse descriptive et comparative de différents groupes de patients selon leur diagnostic clinique (maladie d’Alzheimer ou non) et leur profil biochimique. Nous déterminerons une valeur seuil « locale » pour le rapport Aβ1-42/Aβ1-40 adaptée aux profils biochimiques discordants. Enfin après avoir appliqué ce rapport dans notre population de profils discordants, nous déterminerons le nombre de patients reclassés en tests informatifs (positif et négatif), et contrôlerons si cette nouvelle interprétation est conforme aux diagnostics cliniques.
MATERIELS ET METHODES

I. Population d’étude

A. La cohorte PLM (Paris Lille Montpellier)

La cohorte de cette étude a été constituée par la mise en commun de données de patients, provenant de centres mémoire de recherche et de ressources (CMRR) basés dans trois villes de France : Paris (Hôpital Lariboisière Paris Ile de France Nord), Lille (CHRU Lille) et Montpellier (CHRU Montpellier). Le rapprochement de ces trois villes provient d’une démarche du plan Alzheimer 2008-2012 français de favoriser les interactions entre les CMRR et leurs laboratoires associés ayant des préoccupations scientifiques communes. Sont intégrés dans cette cohorte, tous les patients consécutifs bénéficiant d’une consultation mémoire dans un de trois CMRR et ayant fait l’objet d’une PL pour analyse des marqueurs biologiques de la maladie d’Alzheimer entre le 1er septembre 2010 et le 31 décembre 2013. Les banques de données sont déclarées à la Commission nationale de l’informatique et des libertés (CNIL), et leur constitution a été soumise à un comité d’éthique.

B. Critères d’inclusion

Les patients inclus dans notre population d’étude devaient répondre à des critères d’inclusion stricts :

- Le diagnostic établi par deux médecins du centre mémoire en aveugle des résultats des marqueurs biologiques de la maladie d’Alzheimer dans le LCS
Les patients inclus dans le bras « maladie d’Alzheimer » (MA) devaient être diagnostiqués comme maladie d’Alzheimer probable au stade de démence selon les critères définis par le IWG et le NIA-AA (11,13).

Les patients inclus dans le bras « non évocateur de maladie d’Alzheimer » (NMA) devaient être sains (témoins) ou diagnostiqués comme ayant une pathologie non évocatrice d’une maladie d’Alzheimer : par exemple une pathologie psychiatrique, une démence à Corps de Lewy pure (DCL), une dégénérescence fronto-temporale (DFT), une maladie de Parkinson, une paralysie supranucléaire progressive (PSP), une sclérose latérale amyotrophique (SLA), ou une hydrocéphalie à pression normale (HPN) (60).

C. Critères d’exclusion

Nous avons exclu de notre population d’étude, les patients présentant les caractéristiques suivantes :

- les patients ayant pour diagnostic, une démence vasculaire, une démence mixte, un déclin cognitif léger, une maladie d’Alzheimer prodromale, une maladie d’Alzheimer possible selon les critères de l’IWG et le NIA-AA (10,13), une démence cortico basale, une maladie de Creutzfeldt-Jakob, une aphasie primaire progressive, ou une angiopathie amyloïde.

- Les patients dont le diagnostic est inconnu.

- Les patients ne répondant pas aux critères d’inclusion

D. Variables étudiées

Pour chaque patient, différentes variables quantitatives et qualitatives sont recueillies :
- Variables qualitatives : sexe (Homme ou Femme), Diagnostic (MA ou NMA), Centre (Lille, Paris, Montpellier)

- Variables quantitatives : âge au moment de la PL (en années), score de Mini mental state examination si disponible (MMSE), concentrations en Aβ1-42, Tau, P-Tau et Aβ1-40 (pg/mL), rapport Aβ1-42/Aβ1-40.

Une analyse statistique descriptive sera effectuée pour caractériser la population vis à vis de ces variables et réaliser des comparaisons de moyennes.

II. Matériel

A. Phase pré-analytique

Chaque patient a bénéficié d’une ponction lombaire dans l’espace intervertébral L3/L4 ou L4/L5, réalisée par un médecin du service. Une fiche de traçabilité de l’échantillon fournie par le laboratoire exécutant est complétée par le médecin ou l’infirmière en charge d’envoyer le prélèvement (Annexe 1). Elle comprend l’identité du patient (nom, prénom, sexe, date de naissance), la date et l’heure de prélèvement (de préférence entre 8h et 13h pour permettre un traitement pré-analytique dans les 4 heures), la quantité de LCS recueilli (au minimum 2 mL) dans un tube Sarstedt de 10 mL polypropylène référence 62.610.201., l’aspect du LCS, le nom du prescripteur et les renseignements cliniques (signes cliniques, MMSE…). L’échantillon est ensuite envoyé sur glace soit par coursier, soit par transport automatisé léger via pneumatique.

Une fois acheminé au laboratoire, un technicien prend en charge l’échantillon et vérifie que les conditions de prélèvement et d’acheminement ont été respectées. La date et l’heure de réception de l’échantillon doivent être tracées, le type de contenant doit être certifié conforme aux exigences, et le tube doit bien arriver dans de la glace.
Tout manquement ou anomalie détectée par le technicien à la réception de l’échantillon doit faire l’objet d’une non conformité signalant au prescripteur que le rendu des résultats sera fait sous réserve.

Le tube doit être ensuite centrifugé dans les 4 heures suivant le prélèvement. Le programme est standardisé : 1000g, pendant 10 minutes, à 4°C et sans frein. L’aspect du LCS avant centrifugation est consigné (clair, trouble, sanglant, purulent), de même que l’aspect du LCS après centrifugation (clair, hémolysé, trouble, culot hématique, culot leucocytaire).

Enfin le surnageant du LCS est aliquoté par fractions de 400 µL dans des microtubes Eppendorf de 1,5 mL en polypropylène, jusqu’à épuisement. Chaque microtube est étiqueté avec l’identification du patient et congelé à -80°C.

B. Phase analytique

Pour chaque patient, les marqueurs biologiques dosés étaient Aβ1-42, Tau, P-Tau et Aβ1-40, selon la technique ELISA sandwich.

1. **Trousse de dosage d’Aβ1-42**

Pour réaliser les dosages d’Aβ1-42, nous avons utilisé la trousse INNOTEST® β-AMYLOID (1-42) de la société FUJIREBIO EUROPE® (Gand, Belgique). Deux anticorps sont nécessaires à la technique. L’anticorps de capture a pour référence 21F12 et reconnaît la partie C terminale du peptide, tandis que l’anticorps de détection a pour référence 3D6 et reconnaît la partie N terminale du peptide (Annexe 2). La technique de l’ELISA sandwich a été réalisée selon les procédures du fabricant. Le seuil de détection est de 65 pg/mL, la limite basse de quantification est de 225 pg/mL et la limite haute de quantification est de 1452 pg/mL.
2. Trousse de dosage de Tau

Pour réaliser les dosages de Tau, nous avons utilisé la trousse INNOTEST® hTAU Ag de la société FUJIREBIO EUROPE® (Gand, Belgique). Trois anticorps sont nécessaires à la technique. L’anticorps de capture a pour référence AT120 et reconnaît une zone d’AA proche de la partie C terminale de la protéine. Un premier anticorps de détection, de référence HT7, reconnaît une série d’AA entre les positions 159 à 163, et un second anticorps de détection, de référence BT2, reconnaît une série d’AA entre les positions 193 et 198 (Annexe 2). La technique de l’ELISA sandwich a été réalisée selon les procédures du fabricant. Le seuil de détection est de 34 pg/mL, la limite basse de quantification est de 57 pg/mL et la limite haute de quantification est de 968 pg/mL.

3. Trousse de dosage de P-Tau

Pour réaliser les dosages de P-Tau, nous avons utilisé la trousse INNOTEST® PHOSPHO-TAU (181P) de la société FUJIREBIO EUROPE® (Gand, Belgique). Deux anticorps sont nécessaires à la technique. L’anticorps de capture, de référence HT7, reconnaît une série d’AA entre les positions 159 à 163 et l’anticorps de détection, de référence AT270, reconnaît une série d’AA entre les positions 176 et 182 (Annexe 2). La technique de l’ELISA sandwich a été réalisée selon les procédures du fabricant. Le seuil de détection est de 13 pg/mL, la limite basse de quantification est de 20 pg/mL et la limite haute de quantification est de 199 pg/mL.

4. Trousse de dosage d’Aβ1-40

Pour réaliser les dosages d’Aβ1-40, nous avons utilisé la trousse Human Amyloidβ(1-40)(N) Assay Kit® de la société Immuno-Biological Laboratories® (Fujioka, Japon). Deux anticorps sont nécessaires à la technique. L’anticorps de capture de référence 1A10 et l’anticorps de détection de référence N, qui reconnaît la
partie N terminale du peptide. La technique de l’ELISA sandwich a été réalisée selon les procédures du fabricant.

La mesure des densités optiques de chaque plaque a été réalisée à une longueur d’onde de 415nm par le lecteur de microplaques à absorbance EON1, de BioTek Instruments Inc. (Winooski, USA).

Les coefficients de variation de ces techniques au laboratoire de Lille étaient respectivement de 9% pour Aβ1-42, 9% pour Tau, 10% pour P-Tau, et 13% pour Aβ1-40.

III. Méthodes

A. Valeurs seuils des marqueurs biologiques

Pour chacun des 3 marqueurs biologiques (Aβ1-42, Tau, P-Tau) et du rapport Aβ1-42/Aβ1-40, utilisés comme variables quantitatives, a été attribué une valeur seuil à partir de laquelle la concentration mesurée est considérée comme normale ou pathologique. Dans un souci d’harmonisation des résultats, des valeurs seuils pour Aβ1-42, Tau, et P-Tau communes aux laboratoires Lille, Paris et Montpellier, ont été établies dans une étude multicentrique (60).

- Pour Aβ1-42, la valeur normale est > 700 pg/mL
- Pour Tau, la valeur normale est < 400 pg/mL
- Pour P-Tau, la valeur normale est < 60 pg/mL
- Pour le rapport Aβ1-42/Aβ1-40, cette valeur sera calculée dans cette thèse.

B. Interprétation des profils biochimiques

L’interprétation des profils biochimiques de chaque patient se fera en deux temps : le classement initial de tous les patients selon l’interprétation des trois
marqueurs biologiques usuels, puis le reclassement des profils biochimiques discordants selon une nouvelle interprétation incluant le rapport Aβ1-42/Aβ1-40.

La première partie de l’interprétation fait intervenir les 3 marqueurs biologiques utilisés en routine au laboratoire : Aβ1-42, Tau, et P-Tau. En fonction de sa situation par rapport à sa valeur seuil, chaque marqueur sera interprété comme étant normal ou pathologique. Puis la combinaison obtenue des trois marqueurs définira un profil biochimique correspondant (Tableau 1).

La seconde partie de l’interprétation ne concerne que les patients dont les profils ont été considérés comme étant discordant 1 ou discordant 2. Pour ces derniers, la valeur d’Aβ1-42 sera substituée par la valeur du rapport Aβ1-42/Aβ1-40 interprétée avec sa propre valeur seuil. Nous distinguerons la nouvelle interprétation des profils biochimiques discordants par la mention « du rapport » (ex : Test du rapport négatif) (cf Tableau 2). Nous pourrons donc définir l’effectif et le pourcentage de profils biochimiques initialement discordants devenus informatifs négatifs ou positifs.

<table>
<thead>
<tr>
<th></th>
<th>Rapport Aβ1-42/Aβ1-40</th>
<th>Tau</th>
<th>P-Tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests du rapport informatifs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test du rapport négatif</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Test du rapport positif</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Tests du rapport non informatifs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profil du rapport discordant 1</td>
<td>P</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Profil du rapport discordant 2</td>
<td>N</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

Le « N » signifie Normal, alors que le « P » signifie Pathologique.
C. Adéquation entre profil biochimique et diagnostic clinique

IV. Analyses statistiques

Les analyses statistiques ont été réalisées avec les logiciels SAS® version 9.3 (Brie Comte Robert France), et R version 3.0.2 par les équipes du Pôle de Santé Publique du CHRU de Lille. Le niveau de signification des tests statistiques a été fixé à 5% (0,05).

Les variables quantitatives ont été décrites par la moyenne et l’écart type ou par la médiane et l’étendue interquartile (i.e. 25ième et 75ième percentiles) en cas d’écart à la normalité de la distribution (normalité qui a été vérifiée graphiquement et à l’aide du test de normalité de Shapiro-Wilk). Les variables qualitatives ont été décrites par les pourcentages et effectifs.

Différents groupes ont été analysés. D’un côté, des groupes basés sur le diagnostic clinique (MA et NMA) et, d’un autre côté, des groupes construits sur la
base des 3 marqueurs biologiques Aβ1-42, Tau et P-Tau (test positif, test négatif, profil discordant 1 et profil discordant 2). Ces groupes ont permis de réaliser les comparaisons suivantes :

- MA / NMA
- Comparaison des MA entre Lille, Paris et Montpellier
- Comparaison des NMA entre Lille, Paris et Montpellier
- Test positif / profil discordant 2
- Test négatif / profil discordant 1

Pour les concentrations des marqueurs biologiques, le MMSE et l’âge, la comparaison de 2 groupes a été réalisée par un test t de Student ou par un test U de Mann Whitney (en cas d’écart à la normalité de la distribution); la comparaison de 3 groupes a été réalisée par une analyse de variance ou un test de Kruskal-Wallis (en cas d’écart à la normalité de la distribution).

Pour la répartition hommes/femmes, les groupes ont été comparés par un test du Chi2 ou un test de Fisher exact.

La capacité discriminante du rapport Aβ1-42/Aβ1-40 pour le diagnostic de la maladie d’Alzheimer chez les profils discordants 1 et 2 confondus a été évaluée par l’aire sous la courbe (AUC) ROC (Receiver Operating Characteristic) Nous avons déterminé le seuil qui maximise l’index de Youden Y=Se+Sp-1 (i.e. optimise la sensibilité et la spécificité du diagnostic). Les performances de ce seuil ont été décrites par la sensibilité et la spécificité. Un intervalle de confiance à 95% (IDC) de l’AUC et du seuil optimal a été déterminé par bootstrap (200 ré-échantillonnages de l’échantillon des discordants).
RESULTATS

I. Analyse de la population

A. Description de la population étudiée

Au total, nous avons inclus 457 patients de la cohorte PLM qui répondaient à nos critères d'inclusions et d'exclusions. Un patient avec un profil discordant 2 a été exclu des analyses statistiques a posteriori car ses valeurs d'\(A\beta1-40\) et de son rapport étaient aberrantes par rapport aux autres. L’analyse des données a donc porté sur 456 patients. Il manquait 42 scores de MMSE liés soit à des données manquantes, soit à l'impossibilité de réaliser le test. Concernant la distribution des effectifs dans les centres, 190 patients (41.7%) venaient de Lille, 177 patients (38.8%) de Montpellier et 89 patients (19.5%) de Paris. En moyenne, il y avait pratiquement autant de femmes (53.3%) que d’hommes, et la moyenne d’âge était de 66.2 ans. Concernant les diagnostics de certitude, 242 patients (53%) avaient une maladie d’Alzheimer probable. Parmi les 214 patients NMA, on dénombre 49 DFT, 44 pathologies psychiatriques, 19 DCL, 16 maladies de Parkinson, 16 HPN, 11 exogénoses, 9 témoins, 8 PSP, 7 neuro-VIH, 6 SEP, 5 troubles de la marche, 5 épilepsies, 5 démences sémantiques, 3 néoplasies, 3 causes iatrogéniques, une SLA, une leucodystrophie, une maladie de Gougerot-Sjögren, une encéphalopathie HTLV1, une ataxie cérébelleuse, une anarthrie progressive, une déficience mentale et une cause métabolique.
B. Comparaison des patients selon leur diagnostic.

Les patients MA étaient, de façon statistiquement significative, plus âgés, majoritairement de sexe féminin et ayant un moins bon score au MMSE que les patients NMA. Concernant les marqueurs biologiques, les concentrations en Aβ1-42 et la valeur du rapport Aβ1-42/Aβ1-40 étaient plus basses tandis que les concentrations en Tau et P-Tau étaient plus élevées que chez les patients NMA (p<0.0001) (Tableau 3).

Tableau 3 : Description de la population étudiée et comparaison des variables selon le diagnostic clinique.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Tous</th>
<th>MA</th>
<th>NMA</th>
<th>p (MA vs NMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>456</td>
<td>242</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>67.0 (59.0; 74.0)</td>
<td>68.0 (60.0; 76.0)</td>
<td>66.0 (56.0; 73.0)</td>
<td>0,0027*</td>
</tr>
<tr>
<td>Sexe féminin</td>
<td>243 (53.3)</td>
<td>148 (61.2)</td>
<td>95 (44.4)</td>
<td>0,0003*</td>
</tr>
<tr>
<td>MMSE</td>
<td>22 (17; 25)</td>
<td>20 (16; 24)</td>
<td>24 (19; 28)</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Aβ1-42, pg/mL</td>
<td>698 (532; 1026)</td>
<td>574 (490; 702)</td>
<td>972 (703; 1224)</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Tau, pg/mL</td>
<td>400 (218; 727)</td>
<td>651 (430; 908)</td>
<td>218 (159; 322)</td>
<td><0,0001*</td>
</tr>
<tr>
<td>P-Tau, pg/mL</td>
<td>60 (40; 92)</td>
<td>88 (67; 115)</td>
<td>40 (28; 50)</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Aβ1-40, pg/mL</td>
<td>13518 (9700; 18055)</td>
<td>14579 (11214; 19954)</td>
<td>12035 (8068; 16122)</td>
<td><0,0001*</td>
</tr>
<tr>
<td>Rapport Aβ1-42/Aβ1-40</td>
<td>0.056 (0.037; 0.084)</td>
<td>0.040 (0.030; 0.055)</td>
<td>0.083 (0.060; 0.102)</td>
<td><0,0001*</td>
</tr>
</tbody>
</table>

Médiane (1er Quartile ; 3ème Quartile), Effectif (Pourcentage) * : <0.05
C. Comparaison des patients selon le centre et le diagnostic clinique

Nous avons ensuite comparé les patients de chaque centre, classés dans le même groupe de diagnostic clinique. Pour le groupe MA (Tableau 4), on observe entre les centres une différence significative pour l’âge, le MMSE et tous les marqueurs biologiques du LCS sauf Tau. Néanmoins les concentrations médianes d’Aβ1-42, Tau et P-Tau sont toutes pathologiques selon les valeurs seuils définies.

Pour le groupe NMA (Tableau 5), on observe entre les centres une différence significative pour l’âge, le MMSE, Tau, Aβ1-40 et le ratio Aβ1-42/Aβ1-40. De même les concentrations médianes d’Aβ1-42, Tau et P-Tau sont toutes normales selon les valeurs seuils définies.

Tableau 4 : Description et comparaison, selon le centre, des patients ayant un diagnostic clinique de maladie d’Alzheimer.

<table>
<thead>
<tr>
<th>Variable (Patients MA)</th>
<th>Lille</th>
<th>Montpellier</th>
<th>Paris</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>108</td>
<td>72</td>
<td>62</td>
<td>0.0021*</td>
</tr>
<tr>
<td>Age</td>
<td>64.0 (57.0; 72.0)</td>
<td>69.0 (62.0; 75.0)</td>
<td>69.0 (63.0; 76.0)</td>
<td>0.0011*</td>
</tr>
<tr>
<td>Sexe féminin</td>
<td>64 (59.3)</td>
<td>41 (56.9)</td>
<td>43 (69.4)</td>
<td>0.2929</td>
</tr>
<tr>
<td>MMSE</td>
<td>20 (16; 24)</td>
<td>22 (18; 24)</td>
<td>18 (15; 23)</td>
<td>0.0085*</td>
</tr>
<tr>
<td>Aβ1-42, pg/mL</td>
<td>562 (474; 682)</td>
<td>632 (532; 749)</td>
<td>528 (463; 633)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Tau, pg/mL</td>
<td>754 (476; 954)</td>
<td>578 (441; 867)</td>
<td>569 (375; 841)</td>
<td>0.0617</td>
</tr>
<tr>
<td>P-Tau, pg/mL</td>
<td>98 (73; 122)</td>
<td>84 (66; 107)</td>
<td>78 (62; 110)</td>
<td>0.0395*</td>
</tr>
<tr>
<td>Aβ1-40, pg/mL</td>
<td>12627 (9616; 16482)</td>
<td>18407 (12910; 25035)</td>
<td>15560 (11890; 19954)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Rapport Aβ1-42/Aβ1-40</td>
<td>0.044 (0.034; 0.060)</td>
<td>0.037 (0.027; 0.052)</td>
<td>0.036 (0.027; 0.048)</td>
<td>0.0016*</td>
</tr>
</tbody>
</table>

Médiane (1er Quartile; 3ème Quartile), Effectif (%), * : <0.05
Tableau 5 : Description et comparaison, selon le centre, des patients ayant un diagnostic clinique non évocateur de maladie d'Alzheimer.

<table>
<thead>
<tr>
<th>Variable (Patients NMA)</th>
<th>Lille</th>
<th>Montpellier</th>
<th>Paris</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>82</td>
<td>105</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>63.5 (55.0; 68.0)</td>
<td>68.0 (58.0; 74.0)</td>
<td>68.0 (57.0; 74.0)</td>
<td>0.0373*</td>
</tr>
<tr>
<td>Sexe féminin</td>
<td>34 (41.5)</td>
<td>53 (50.5)</td>
<td>8 (29.6)</td>
<td>0.1199</td>
</tr>
<tr>
<td>MMSE</td>
<td>21 (15; 25)</td>
<td>27 (23; 29)</td>
<td>23 (19; 26)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Aβ1-42, pg/mL</td>
<td>1031 (759; 1252)</td>
<td>921 (669; 1214)</td>
<td>943 (653; 1122)</td>
<td>0.3812</td>
</tr>
<tr>
<td>Tau, pg/mL</td>
<td>209 (148; 310)</td>
<td>248 (166; 386)</td>
<td>187 (153; 257)</td>
<td>0.0295*</td>
</tr>
<tr>
<td>P-Tau, pg/mL</td>
<td>43 (31; 49)</td>
<td>37 (27; 51)</td>
<td>36 (26; 45)</td>
<td>0.3902</td>
</tr>
<tr>
<td>Aβ1-40, pg/mL</td>
<td>10419 (7251; 14034)</td>
<td>14348 (9369; 19061)</td>
<td>11263 (7494; 14937)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Rapport Aβ1-42/Aβ1-40</td>
<td>0.099 (0.082; 0.117)</td>
<td>0.068 (0.051; 0.085)</td>
<td>0.084 (0.069; 0.100)</td>
<td><0.0001*</td>
</tr>
</tbody>
</table>

Médiane (1er Quartile; 3ème Quartile), Effectif (%), * : <0.05

D. Interprétation initiale du test en fonction des marqueurs biologiques usuels : Aβ1-42, Tau et P-Tau

Parmi les 456 patients de notre cohorte (Tableau 6), 298 profils biochimiques (65.4%) étaient informatifs (144 tests négatifs et 154 tests positifs), 113 profils (24.8%) étaient discordants (57 profils discordants 1 et 56 profils discordants 2), et 45 (9,8%) étaient classés en autres profils.

Parmi les patients avec un test négatif, 133 (92.4%) sont de vrais négatifs (patients NMA), et parmi les patients avec un test positif, 147 (95.5%) sont de vrais positifs (patients MA).

Parmi les patients avec un profil discordant 1, on trouve majoritairement des patients NMA (38 soit 66.7%), tandis que pour les patients avec un profil discordant 2 on trouve majoritairement des patients MA (44 soit 78.6%).
Parmi les patients avec un autre profil, il n'y a pas de prédominance pour un diagnostic en particulier (21 MA contre 24 NMA).

<table>
<thead>
<tr>
<th></th>
<th>Patients NMA</th>
<th>Patients MA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test négatif</td>
<td>133</td>
<td>11</td>
</tr>
<tr>
<td>Test positif</td>
<td>7</td>
<td>147</td>
</tr>
<tr>
<td>Profil discordant 1</td>
<td>38</td>
<td>19</td>
</tr>
<tr>
<td>Profil discordant 2</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>Autres profils</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>214</td>
<td>242</td>
</tr>
</tbody>
</table>

E. Comparaison des patients selon leur profil biochimique

Nous allons donc comparer les caractéristiques des patients ayant un profil biochimique discordant 1 avec les patients ayant un test négatif, car ces deux profils biochimiques comportent une majorité de patients NMA. Puis nous allons comparer les caractéristiques des patients ayant un profil biochimique discordant 2 avec les patients ayant un test positif, car ces deux profils biochimiques comportent un majorité de patients MA.

Dans un premier temps, nous avons comparé les profils biochimiques pour lesquels les patients sont majoritairement NMA (Tableau 7). Il n'a pas été mis en évidence de différence statistiquement significative pour l'âge, le sexe, les concentrations en Tau et P-Tau ainsi que pour le rapport Aβ1-42/Aβ1-40. Le MMSE
était plus bas chez les patients ayant un profil biochimique discordant 1, de même pour les concentrations en Aβ1-42 et Aβ1-40.

Tableau 7 : Description et comparaison des patients ayant un test négatif avec ceux ayant un profil biochimique discordant 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test négatif</th>
<th>Profil discordant 1</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>144</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>65.0 (55.0; 72.0)</td>
<td>67.0 (61.0; 74.0)</td>
<td>0.0476</td>
</tr>
<tr>
<td>Sexe féminin</td>
<td>71 (49.3)</td>
<td>29 (50.9)</td>
<td>0.8408</td>
</tr>
<tr>
<td>MMSE</td>
<td>25 (21 ; 28)</td>
<td>19 (14 ; 25)</td>
<td>< 0.0001*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test négatif</th>
<th>Profil discordant 1</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aβ1-42, pg/mL</td>
<td>1065 (880; 1241)</td>
<td>555 (471; 621)</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>Tau, pg/mL</td>
<td>206 (159; 262)</td>
<td>207 (108; 304)</td>
<td>0.8951</td>
</tr>
<tr>
<td>P-Tau, pg/mL</td>
<td>39 (30; 46)</td>
<td>33 (19; 47)</td>
<td>0.0601</td>
</tr>
<tr>
<td>Aβ1-40, pg/mL</td>
<td>12976 (9741; 15937)</td>
<td>7446 (4921; 9109)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Rapport Aβ1-42/Aβ1-40</td>
<td>0.086 (0.068; 0.103)</td>
<td>0.076 (0.059; 0.104)</td>
<td>0.1404</td>
</tr>
</tbody>
</table>

Médiane (1er Quartile; 3ème Quartile), Effectif (%), * : <0.05

Dans un second temps, nous comparons les profils biochimiques pour lesquels les patients sont majoritairement MA (Tableau 8). Il n’a pas été mis en évidence de différence statistiquement significative pour l’âge, le sexe, le MMSE, et les concentrations en Tau et P-Tau. En revanche, les concentrations en Aβ1-42 et Aβ1-40 étaient plus élevées chez les patients ayant un profil biochimique discordant 2, comme pour le rapport Aβ1-42/Aβ1-40.
Tableau 8 : Description et comparaison des patients ayant un test positif avec ceux ayant un profil biochimique discordant 2.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test positif</th>
<th>Profil discordant 2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>154</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>68.0 (61.0; 75.0)</td>
<td>69.0 (60.0; 76.0)</td>
<td>0.5692</td>
</tr>
<tr>
<td>Sexe féminin</td>
<td>87 (56,5)</td>
<td>31 (55,4)</td>
<td>0.8833</td>
</tr>
<tr>
<td>MMSE</td>
<td>20 (15; 24)</td>
<td>21 (18; 24)</td>
<td>0.0790</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test positif</th>
<th>Profil discordant 2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aβ1-42, pg/mL</td>
<td>529 (450; 603)</td>
<td>844 (735; 1301)</td>
<td>< 0.0001*</td>
</tr>
<tr>
<td>Tau, pg/mL</td>
<td>773 (558; 997)</td>
<td>669 (530; 893)</td>
<td>0.1242</td>
</tr>
<tr>
<td>P-Tau, pg/mL</td>
<td>99 (76; 123)</td>
<td>87 (76; 111)</td>
<td>0.0325</td>
</tr>
<tr>
<td>Aβ1-40, pg/mL</td>
<td>14455 (11350; 19954)</td>
<td>18667 (15088; 25545)</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Rapport Aβ1-42/Aβ1-40</td>
<td>0.034 (0.026; 0.046)</td>
<td>0.050 (0.039; 0.060)</td>
<td><0.0001*</td>
</tr>
</tbody>
</table>

Médiane (1er Quartile; 3ème Quartile), Effectif (%), * : <0.05

II. Détermination statistique de la valeur seuil du rapport Aβ1-42/Aβ1-40

Dans cette thèse, nous souhaitons utiliser le rapport Aβ1-42/Aβ1-40 pour essayer de classer les patients dont le profil biochimique des marqueurs biologiques du LCS est discordant. Devant l’absence de consensus sur la valeur seuil de ce rapport, nous avons choisi de la calculer à l’aide de notre population.

Pour ce faire, les 113 patients avec un profil biochimique discordant (1 ou 2) ont été extraits de la cohorte et séparés selon leur diagnostic clinique : 63 patients MA pour 50 patients NMA. La répartition pour chaque centre est détaillée dans le tableau 9. Une courbe ROC a été réalisée sur cet échantillon (Figure 7). La valeur seuil du rapport qui maximise l’indice de Youden est de 0.059 IDC [0.057; 0.073].
Tableau 9: Répartition dans chaque centre des patients et leur diagnostic clinique, ayant un profil biochimique discordant.

<table>
<thead>
<tr>
<th></th>
<th>NMA</th>
<th>MA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lille</td>
<td>18</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>Paris</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Montpellier</td>
<td>24</td>
<td>28</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>63</td>
<td>113</td>
</tr>
</tbody>
</table>

Figure 7: Courbe ROC (Receiver operating characteristic) du rapport Aβ1-42/Aβ1-40 chez les profils biochimiques discordants. AUC : Aire sous la courbe, Se : Sensibilité, Sp : Spécificité.

La sensibilité globale du seuil est de 0.68 pour une spécificité de 0.80. Nous avons ensuite déterminé la sensibilité et la spécificité du rapport Aβ1-42/Aβ1-40 pour chaque centre. Pour Lille, la sensibilité est de 0.56 et la spécificité est de 0.83. Pour Montpellier, la sensibilité est de 0.82 et la spécificité est de 0.71. Pour Paris, la sensibilité est de 0.63 et la spécificité est de 1.00.
III. Nouvelle interprétation des profils discordants en utilisant le rapport $A\beta1-42/A\beta1-40$

Une fois la valeur seuil du rapport $A\beta1-42/A\beta1-40$ déterminée, nous l’avons appliquée aux profils biochimiques discordants en substituant la concentration en $A\beta1-42$ comme expliqué dans le Tableau 2. Les résultats obtenus sont résumés dans le Tableau 10.

Sur les 113 profils biochimiques discordants, nous en avons rendus 83 (73.5%) informatifs (42 tests du rapport négatifs et 41 tests du rapport positifs). Le nombre de tests informatifs est passé de 298 (65%) à 381 (83%), soit une augmentation de l’informativité de 18%. Parmi les patients avec un test du rapport négatif, 32 (76.2%) sont de vrais négatifs (patients NMA), et parmi les patients avec un test du rapport positif, 35 (85.4%) sont de vrais positifs (patients MA). Ce qui fait un total de 67 patients bien classés.

Il reste néanmoins 30 patients (26.5%) dont le profil reste discordant rendant le test du rapport non informatif pour les cliniciens.

Tableau 10: Répartition des 113 patients avec un profil discordant en fonction de leur diagnostic clinique et de la nouvelle interprétation du test comprenant le rapport $A\beta1-42/A\beta1-40$, Tau et P-Tau.

<table>
<thead>
<tr>
<th></th>
<th>Patients NMA</th>
<th>Patients MA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test du rapport négatif</td>
<td>32</td>
<td>10</td>
<td>42</td>
</tr>
<tr>
<td>Test du rapport positif</td>
<td>6</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>Test du rapport non informatif</td>
<td>12</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>63</td>
<td>113</td>
</tr>
</tbody>
</table>
IV. Arbre récapitulatif

L’arbre ci-dessous (Figure 8) fait une synthèse de la répartition des 456 patients selon leur profil biochimique et leur diagnostic clinique. Les deux étapes successives sont représentées : la première qui concerne tous les patients en utilisant Aβ1-42, Tau et P-Tau puis la seconde ne qui concerne que les patients dont le profil biochimique est discordant, en utilisant le rapport Aβ1-42/Aβ1-40, Tau et P-Tau. Chaque graphique comporte le nombre de patients MA (en rouge) et NMA (en vert) pour chaque profil.

Figure 8: Arbre récapitulatif du classement de tous les patients de la cohorte PLM.
Dans les graphiques, en vert sont représentés les patients NMA et en rouge les patients MA. Les pourcentages correspondent aux patients bien classés (ex : pourcentage de patients NMA dans le test négatif).
DISCUSSION

I. Principaux résultats

A l’issue des différentes analyses réalisées, les principaux résultats sont :

- Sur 456 patients, la proportion ayant un profil biochimique discordant est de 113 soit 24.8%.
- Les caractéristiques cliniques et biologiques des patients ayant un profil biochimique discordant 1 sont comparables avec celles des patients ayant un test négatif. Les caractéristiques cliniques et biologiques des patients ayant un profil biochimique discordant 2 sont comparables avec celles des patients ayant un test positif.
- La valeur seuil du rapport Aβ1-42/Aβ1-40 est de 0.059 [0.057; 0.073] avec une aire sous la courbe ROC égale à 0.81.
- L’utilisation des trois marqueurs biologiques (rapport Aβ1-42/Aβ1-40, Tau et P-Tau) permet de reclasser 83 (73.5%) des 113 profils biochimiques discordants en tests informatifs, dont 67 sont correctement classés selon leur diagnostic clinique (32 vrais négatifs et 35 vrais positifs). Le nombre de tests informatifs est passé de 298 (65%) à 381 (83%), soit une augmentation de l’informativité de 18%
II. Interprétation des résultats

A. La cohorte

La cohorte sur laquelle se base ce travail n’est pas représentative du recrutement d’un CMRR puisque, pour réaliser une courbe ROC et déterminer une valeur seuil du rapport Aβ1-42/Aβ1-40, il fallait sélectionner deux groupes de patients : des patients atteints de maladie d’Alzheimer probable, et des patients non évocateurs de maladie d’Alzheimer. Nous avons donc dû exclure ceux dont les symptômes, comme un déclin cognitif léger (MCI) ou une maladie d’Alzheimer possible, ne permettaient pas de trancher entre une maladie d’Alzheimer et une autre pathologie. Au stade MCI, il est difficile de prédire si le patient évoluera ou non vers le stade de démence (10). Cette catégorie de patients représente, à titre d’exemple, environ la moitié des indications de consultation au CMRR de Lille (61). Ainsi, ont été formés deux groupes de patients, d’effectif équivalent, bien distincts, validés par la différence statistique de leurs caractéristiques et de leurs marqueurs biologiques. Les patients MA sont bien différents des patients NMA, notamment pour le rapport Aβ1-42/Aβ1-40, avec des caractéristiques cliniques et biologiques comparables à celles décrites dans la littérature : principalement des femmes, plus âgées, avec un score du MMSE plus faible, et des marqueurs biologiques du LCS dont les valeurs médianes sont dans la zone pathologique (57,62–64).

Les patients MA et NMA n’étaient pas totalement comparables entre les centres, notamment pour l’âge, le MMSE et certains marqueurs biologiques. La disparité d’âge et de MMSE pourrait être expliquée par un recrutement différent de patients entre les centres. Par exemple, le fait que le CMRR de Lille soit centre de référence pour les malades jeunes pourrait expliquer la différence d’âge médian
entre les patients MA de Lille (64 ans), et les patients MA de Montpellier et Paris (69 ans).

De surcroît, le nombre de patients inclus dans le centre Paris durant la même période d’observation est moins élevé que dans les deux autres centres. Plusieurs hypothèses pour expliquer cette différence peuvent être avancées : la première concerne la présence de deux autres CMRR dans la région Ile de France contrairement aux régions Nord Pas-de-Calais et Languedoc-Roussillon où il n’existe qu’un seul CMRR. La deuxième hypothèse serait relative à des disparités inter-centre sur l’indication de la PL. On ferait plus de PL à Lille et Montpellier qu’à Paris. Enfin, la dernière hypothèse serait démographique avec un nombre de personnes âgées de plus de 60 ans plus basse dans la région Ile de France que dans la région Languedoc-Roussillon ou Nord Pas-de-Calais (65).

Intéressons-nous maintenant au nombre de profils biologiques discordants retrouvés dans notre cohorte. Il est important de préciser que le nombre d’études qui étudie les profils biologiques discordants est très faible et que celles qui se sont penchées sur le sujet ont des définitions variables d’un profil discordant. En France, une équipe de Nancy (66) s’est intéressée aux différents types de profils biochimiques du LCS mais a inclus les patients MCI et s’est concentrée uniquement sur la discordance de deux marqueurs biologiques : Aβ1-42 et P-Tau. La population était de 376 patients. Leurs profils biologiques discordants correspondent aux nôtres auxquels il faut rajouter une partie des « autres profils ». Leur taux de patients discordants est de 32% comparable, après recalcul, au notre : 30%. On retrouve une publication espagnole (67) mais avec un petit effectif (n=43) composé uniquement de témoins et de patients MCI, qui définit ses patients discordants sur la base des trois marqueurs biologiques Aβ1-42, Tau et P-Tau, de manière comparable à ce que nous avons fait dans notre travail. Leur taux de profils discordants s’élève à 37,2% à
Comparer à nos 24.8%. Une thèse d'exercice de neurologie réalisée à Nantes en 2013 (68) a également défini les profils biochimiques discordants uniquement sur la base des deux marqueurs Aβ1-42 et P-Tau et en incluant des patients MCI, comme l'étude de Nancy (66). Leur effectif total était de 341 patients. Ils n’ont étudié que les profils discordants avec une concentration pathologique de P-Tau et une valeur normale d’Aβ1-42, l’équivalent dans notre travail des profils discordants 2 auxquels on aurait ajouté une partie des autres profils non informatifs (plus précisément ceux avec P-Tau pathologique, Tau normal et Aβ1-42 normal). Leur taux s’élève à 18,5%, ce qui est comparable, après recalcul, à 15,6% pour notre cohorte.

Nous avons montré que les caractéristiques des patients appartenant aux deux groupes, test négatif et profil discordant 1, sont comparables à l’exception du score MMSE, de la concentration en Aβ1-42 et Aβ1-40 qui sont plus bas chez les discordants. Ces résultats vont dans le sens de l’hypothèse de Wiltfang et al. (55) qu’il y aurait chez les patients avec un profil discordant 1 une faible production de peptide amyloïde. La différence pour le score MMSE peut s’expliquer par le fait qu’il y ait plus de patients atteints de la maladie d’Alzheimer dans le groupe profil discordant 1 (33.3%) que dans le groupe test négatif (7.6%).

De même, les caractéristiques des patients appartenant aux deux groupes, test positif et profil discordant 2, sont comparables à l’exception des concentrations en Aβ1-42 et Aβ1-40 qui sont plus élevées chez les discordants. Ces résultats vont également dans le sens de l’hypothèse de Wiltfang et al. (55) qu’il y aurait chez les patients avec un profil discordant 2 une forte production de peptide amyloïde. L’absence de différence pour les concentrations de la protéine Tau et P-Tau suggérerait un processus de mort neuronale d’intensité équivalente entre les deux groupes.
Au total, l’ensemble de ces éléments permet de valider cette cohorte pour la réalisation de l’objectif principal de la thèse.

B. Le rapport Aβ1-42/Aβ1-40

1. Son intérêt pour le biologiste : augmenter l’informativité des profils biochimiques des marqueurs de la maladie d’Alzheimer

Cette thèse s’inscrit dans la continuité d’un travail réalisé dans le cadre du groupe PLM sur l’intérêt du rapport Aβ1-42/Aβ1-40, utilisé à la place d’Aβ1-42, en première intention pour l’aide au diagnostic de la maladie d’Alzheimer (69) (publication soumise). Il a été démontré que l’utilisation du rapport n’était pas plus efficace que la concentration en Aβ1-42 pour classer les patients MA et NMA en première intention chez tous les patients. Différentes valeurs seuils du rapport ont été calculées selon les centres, mais pour la population totale, cette valeur était de 0.055. Les profils biochimiques discordants étaient définis sur la base de deux marqueurs biologiques : Aβ1-42 ou le rapport Aβ1-42/Aβ1-40 et P-Tau.

Pour aller plus loin dans la réflexion de ce travail du groupe PLM, nous avons décidé d’utiliser ce rapport uniquement en deuxième intention chez les patients avec un test non informatif, plus précisément ceux dont la valeur du marqueur de la pathologie amyloïde était discordant avec les marqueurs de la DNF. De plus, afin d’être le plus proche des recommandations consensuelles sur l’interprétation des marqueurs biologiques du LCS (70), nous avons décidé de garder une interprétation du test à trois marqueurs biologiques (Aβ1-42 ou le rapport Aβ1-42/Aβ1-40, Tau et P-Tau) et non uniquement deux (Tau exclu). Afin d’optimiser la sensibilité et la spécificité de ce rapport Aβ1-42/Aβ1-40, il était nécessaire de redéfinir une valeur seuil sur la base d’une nouvelle courbe ROC chez les profils discordants 1 et 2 confondus.
Dans la littérature, on retrouve des utilisations du rapport $\text{A}\beta_1-42/\text{A}\beta_1-40$ différentes d’une publication à l’autre. Nous les avons regroupées dans le tableau 11.

Tableau 11: Publications qui étudient l’intérêt du rapport $\text{A}\beta_1-42/\text{A}\beta_1-40$.

<table>
<thead>
<tr>
<th>Auteurs</th>
<th>Année</th>
<th>Valeur seuil du rapport</th>
<th>AUC</th>
<th>Patients auxquels le rapport est appliqué</th>
<th>Réf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewczuk et al.</td>
<td>2004</td>
<td>0.11</td>
<td>0.913</td>
<td>Tous</td>
<td>(59)</td>
</tr>
<tr>
<td>Lewczuk et al.</td>
<td>2014</td>
<td>0.06</td>
<td>0.974</td>
<td>Tous</td>
<td>(56)</td>
</tr>
<tr>
<td>Slaets et al.</td>
<td>2013</td>
<td>0.057</td>
<td>0.749</td>
<td>Tous</td>
<td>(71)</td>
</tr>
<tr>
<td>Dumurgier et al.</td>
<td>NA</td>
<td>0.055</td>
<td>0.81</td>
<td>Tous</td>
<td>(69)</td>
</tr>
<tr>
<td>Tabaraud et al.</td>
<td>2012</td>
<td>0.05</td>
<td>NA</td>
<td>Discordants (P-Tau et IATI)</td>
<td>(57)</td>
</tr>
<tr>
<td>Decrocq</td>
<td>2013</td>
<td>0.05</td>
<td>NA</td>
<td>Discordants (P-Tau et $\text{A}\beta_1-42$)</td>
<td>(68)</td>
</tr>
<tr>
<td>Sauvée et al.</td>
<td>2014</td>
<td>0.05</td>
<td>NA</td>
<td>Discordants (P-Tau et $\text{A}\beta_1-42$)</td>
<td>(66)</td>
</tr>
</tbody>
</table>

AUC : Aire sous la courbe, NA : Non applicable

Un certain nombre d’études ont cherché à mettre en évidence l’intérêt d’appliquer le rapport $\text{A}\beta_1-42/\text{A}\beta_1-40$ à tous les patients pour séparer les patients MA des patients NMA. Avec cet objectif à atteindre, une équipe allemande a fait deux études à 10 ans d’intervalle : en 2004 (59), elle n’arrive pas à mettre en évidence de différence significative des aires sous les courbes ROC du peptide $\text{A}\beta_1-42$ (0.913) et du rapport $\text{A}\beta_1-42/\text{A}\beta_1-40$ (0.920) pour une valeur seuil optimale à 0.11. Alors qu’en 2014 (56), cette même équipe réussit à rendre la différence significative avec une valeur seuil du rapport $\text{A}\beta_1-42/\text{A}\beta_1-40$ à 0.06 (0.974 pour l’AUC du rapport contre 0.827 pour l’AUC de $\text{A}\beta_1-42$, $p<0.0001$). L’intérêt du rapport est démontré. Une seule publication (71) avec des diagnostics cliniques certifiés par un examen anatomopathologique a montré l’utilité du rapport avec une valeur seuil à 0.057 (AUC : 0.749) pour différencier les patients MA des patients NMA chez qui la concentration en P-Tau dans le LCS est intermédiaire (comprise entre 49.3 et 87.56 pg/mL).
D'autres études ont, quant à elles, confirmé l'intérêt d'utiliser le rapport Aβ1-42/Aβ1-40 pour séparer les patients MA des patients NMA uniquement chez ceux avec un profil discordant. La définition du profil discordant varie cependant selon les publications, ce qui rend plus difficile la comparaison. En prenant une valeur seuil de 0.05 pour le rapport Aβ1-42/Aβ1-40, trois études proposent des utilisations différentes: Tabaraud et al. (57) l’emploient pour des profils avec une discordance entre P-Tau et le IATI (Innotest Amyloid Test Index), Decrocq (68) ne le réserve que pour les profils avec P-Tau pathologique et Aβ1-42 normal, tandis que Sauvée et al. (66) l’utilise pour toute discordance entre Aβ1-42 et P-Tau. A noter que cette dernière équipe affiche, grâce au reclassement des profils discordants, une augmentation du nombre de tests informatifs de 18%, chiffre identique à ce que l’on met en évidence dans cette thèse.

Même si la mise en oeuvre de ces études est difficilement comparable à cause du recrutement de patients différents, des diagnostics différents de NMA, des conditions pré-analytiques et analytiques non standardisées, les résultats que nous avons obtenus semblent cohérents avec la littérature.

Lorsque sa valeur est basse, le rapport Aβ1-42/Aβ1-40 semble donc être un bon moyen pour affirmer la présence d’un processus d’agrégation de peptide amyloïde sous jacent masqué biologiquement par sa forte production. Il serait intéressant de comparer les profils biochimiques discordants 2 avec les profils de patients atteints d’une maladie d’Alzheimer génétique, caractérisés également par une forte production de peptide amyloïde, afin d’observer s’il existe des similitudes. Néanmoins les patients avec mutations restent trop rares pour permettre à ce stade une comparaison. Une autre étude intéressante serait de suivre des sujets âgés indemnes de démences et de comparer leur évolution vers la maladie d’Alzheimer selon leur concentration en Aβ1-40. On pourrait alors vérifier l’hypothèse que des
concentrations élevées de peptide amyloïde Aβ1-40 dans le LCS pourraient être corrélées à un risque augmenté de développer une maladie d'Alzheimer, ce qui suggérait une plus forte agrégation du peptide Aβ1-42 dans le cerveau. Dans notre cohorte, la concentration significativement plus élevée d'Aβ1-40 chez les patients MA par rapport aux patients NMA serait en faveur de cette hypothèse.

Néanmoins, ces suppositions sur la production faible ou forte de peptide amyloïde compensée par l'utilisation de ce rapport, ne permettent pas d'expliquer toutes les discordances entre les marqueurs biologiques puisque 30 patients ne sont toujours pas classés. La physiopathologie précise de la maladie d'Alzheimer reste encore mal connue et limite donc la compréhension de certains profils biochimiques des marqueurs biologiques du LCS. Une concertation pluridisciplinaire pourrait être envisagée pour étudier le cas de ce type de patient.

2. Son intérêt pour le clinicien : aider à l'orienter sur la pose du diagnostic de la maladie d'Alzheimer

Afin de valider l'intérêt du rapport Aβ1-42/Aβ1-40, il est important d'évaluer la probabilité d'avoir une maladie d'Alzheimer si on a test du rapport positif ou un test du rapport négatif. Cette évaluation avait été réalisée au sein du groupe PLM (72) si on avait un test positif ou un test négatif. Avec un test positif, on avait 94.2% de risque d'avoir une maladie d'Alzheimer contre 9.6% avec un test négatif. Dans notre étude, avec un test du rapport positif, on a 85.4% de chance d'avoir une maladie d'Alzheimer contre 23.8% avec un test du rapport négatif. Même si le nombre réduit de nos patients ne nous a pas permis de réaliser des analyses statistiques comparatives, nos résultats suggèrent que le pourcentage de MA dans le groupe test du rapport positif semble proche du test positif. Le clinicien pourrait interpréter le test du rapport positif comme « un profil biochimique en faveur d'une maladie
d’Alzheimer ». En revanche, le pourcentage de MA semble plus élevé dans le groupe test du rapport négatif que parmi les tests négatifs. Le clinicien pourrait interpréter le test du rapport négatif comme « un profil ne permettant pas d’exclure une maladie d’Alzheimer ». Mais pour valider cette démarche de façon statistique, il est nécessaire d’augmenter le nombre de patients avec un test du rapport positif et un test du rapport négatif.

III. Limites de l’étude

La principale limite de cette étude est l’absence de cohorte de réplication indépendante pour valider de façon rigoureuse la valeur seuil que nous avons estimée pour le rapport Aβ1-42/Aβ1-40. En effet, lorsque nous avons reclassé les patients ayant un profil biochimique discordant, nous avons utilisé la valeur seuil du rapport optimisée à partir de cette même population. Il est donc normal que nous ayons augmenté le nombre de profils informatifs. Il aurait fallu, pour vérifier la valeur seuil du rapport, séparer le nombre de discordants en deux échantillons, calculer la valeur seuil sur le premier et la valider sur le deuxième, mais nous nous sommes heurtés au faible nombre de patients ayant un profil discordant. Afin de rendre un travail statistiquement acceptable, nous avons donc privilégié la détermination d’une valeur seuil optimale qui devra être validée par une nouvelle cohorte. Cependant, la cohérence de la valeur, que nous avons obtenue, avec les données de la littérature, nous laisse penser que nous sommes proches d’une valeur adaptée à notre problématique.

La deuxième limite de cette étude provient de l’absence de standard international pour la détermination des valeurs seuils de chaque marqueur biologique de la maladie d’Alzheimer dans le LCS (73). Il est donc délicat de comparer nos
résultats avec ceux d'autres laboratoires dont les valeurs seuils définies diffèrent en fonction de la technique de dosage utilisée et de conditions pré-analytiques et analytiques. La technique ELISA sandwich avec détection par spectrophotométrie est la plus répandue en Europe, mais la technique la plus utilisée dans les protocoles de recherche aux Etats-Unis est la méthode sandwich sur microsphères avec détection de la fluorescence par cytométrie de flux (Luminex-xMAP technology®) (74). L'avantage de cette dernière technique est de permettre le multiplexage et une seule analyse suffit pour doser les trois marqueurs biologiques Aβ1-42, Tau et P-Tau. Ceci permet un gain de temps et de volume d'échantillon, par contre elle présente l'inconvénient d'être beaucoup plus sensible aux effets matrice que la technique ELISA. Enfin, cette technologie ne bénéficie pas de la norme CE indispensable en Europe pour les démarches actuelles d'accréditation des laboratoires d'analyses médicales, à l'inverse du kit commercial ELISA de FUJIREBIO EUROPE® (Gand, Belgique) utilisé en France dans le milieu hospitalier. Une autre technique émerge actuellement, il s'agit du dosage des marqueurs biologiques du LCS par électrochimieluminescence, Meso Scale Discovery®. La multiplicité de ces techniques rend difficile l'harmonisation des pratiques entre laboratoires et la comparaison des résultats.

Une troisième limite de l'étude vient de la sélection des patients pour constituer la cohorte. Ont été exclus tous les patients avec un déclin cognitif léger et une maladie d'Alzheimer probable. Nous avons donc artificiellement modifié la prévalence de la maladie d'Alzheimer au sein des CMRR. Par conséquent, nous ne pouvons pas fournir de valeur prédictrive positive et de valeur prédictrive négative, utiles aux cliniciens, car ces paramètres varient en fonction de la prévalence de l'affection dans la population.
IV. Points forts de l’étude

Le caractère multicentrique du recrutement constitue un des points forts de notre étude. La participation de trois CMRR de trois villes différentes a permis d’augmenter l’effectif notre cohorte et donc d’augmenter la puissance statistique.

Le recueil des données a été réalisé de façon prospective. On limite donc le biais de mémorisation puisque les données de chaque patient et la concentration des différents marqueurs biologiques étaient consignées directement dans un tableau récapitulatif.

Un des points clés de ce travail, inhérent au caractère multicentrique, est l’harmonisation des procédures entre les trois laboratoires. Comme nous l’avons mentionné dans la partie « limites de l’étude », la non standardisation des techniques inter-laboratoires conduit à des disparités dans le rendu de résultats et dans l’interprétation des marqueurs biologiques de la maladie d’Alzheimer du liquide cérébro-spinal (75). Grâce au groupe de cliniciens et biologistes de l’étude PLM, des procédures communes ont été rédigées pour la prise en charge des échantillons de LCS (60). Ainsi au niveau pré-analytique, les mêmes tubes sont utilisés et au niveau analytique, les mêmes kits de dosage sont utilisés.

Chaque diagnostic clinique a été posé en aveugle des marqueurs biologiques du LCS par deux voire trois praticiens hospitaliers du CMRR. De cette manière, le clinicien n’était pas orienté par l’interprétation du test pour rendre son diagnostic. Un biais de classement a donc pu être contrôlé.

Enfin le résultat obtenu pour la valeur seuil du rapport Aβ1-42/Aβ1-40 (0.059) est en accord avec les données récentes de la littérature. Notamment la publication de Slaets en 2013, avec une valeur seuil de 0.057 (71) et celle de Lewczuk en 2014 avec une valeur seuil à 0.060 (56).
V. Perspectives

Ce travail constitue une étape préliminaire de l’étude de l’intérêt du rapport Aβ1-42/Aβ1-40 chez les patients ayant un profil biochimique discordant des marqueurs biologiques du LCS dans l’aide au diagnostic de la maladie d’Alzheimer. Il est nécessaire, à présent, de réaliser une étude de validation avec une cohorte indépendante pour confirmer l’intérêt de la valeur seuil calculée pour le rapport.

A terme, il serait souhaitable de préciser les valeurs prédictives positives et négatives des tests du rapport positif et négatif. Enfin il faudrait essayer de reproduire cette démarche diagnostique sur d’autres populations : les patients MCI dont on suivrait l’évolution clinique, les démences mixtes ou encore les patients diagnostiqués avec une maladie d’Alzheimer possible.
CONCLUSION

Au terme de ce travail dont l'objectif principal était de démontrer l'intérêt du rapport Aβ1-42/Aβ1-40 pour améliorer l’informativité des marqueurs biologiques de la maladie d’Alzheimer, nous avons déterminé une valeur seuil de 0.059 pour ce rapport, et proposé de l’utiliser en substitution du dosage d’Aβ1-42 chez les patients dont le profil biologique initial des marqueurs du LCS (Aβ1-42, Tau et P-Tau) est discordant. Cette nouvelle démarche permettrait d’augmenter le nombre de tests informatifs mais devra être vérifiée dans une étude complémentaire indépendante.

La place des marqueurs biologiques du LCS reste encore à définir dans la démarche diagnostique de la maladie d’Alzheimer et des maladies apparentées. Le diagnostic final ne peut être obtenu que sur la base d’un faisceau d’arguments parmi lesquels les critères cliniques sont les critères de base. Les marqueurs biologiques du LCS, en parallèle avec les nouveaux biomarqueurs d’imagerie, permettent d’apporter des éléments de preuve supplémentaires pour attester la présence de processus physiopathologiques cérébraux sous-jacents présents chez le patient. Ces éléments de preuve supplémentaires doivent s’interpréter idéalement à la suite d’une réflexion globale et pluridisciplinaire entre neurologues, médecins généralistes, neuropsychologues, radiologues, médecins nucléaires et biologistes. Toutefois, les préconisations de la Haute Autorité de Santé de réaliser les dosages des marqueurs biologiques de la maladie d’Alzheimer dans le LCS, chez les sujets ayant des tableaux cliniques atypiques de démence ou chez les sujets jeunes suggèrent qu’ils ont déjà toute leur place dans ces cas particuliers (76).
REFERENCES BIBLIOGRAPHIQUES

61. PHRC Balthazar - Communications personnelles locales.

68. Decrocq C. Caractéristiques cliniques des patients avec un dosage d’Aβ42 dans le LCS normal et 181P-tau dans le LCS anormal dans une population d’un centre mémoire et valeur du ratio Aβ42/Aβ40. [Nantes]: Thèse d’exercice, Faculté de médecine de Nantes; 2013.

Annexe 1 : Fiche de traçabilité de prélèvement de LCS pour le dosage des marqueurs biologiques de la Maladie d’Alzheimer au CHRU de Lille.

Annexe 2 : Anticorps utilisés pour la technique ELISA sandwich de Aβ1-42, Tau et P-Tau
Annexe 1 : Fiche de traçabilité de prélèvement de LCS pour le dosage des marqueurs biologiques de la Maladie d'Alzheimer au CHRU de Lille.

Identification du patient
- **Nom** :
- **Prénom** :
- **Nom marital** :
- **Sexe** : [] M [] F
- **Date de naissance** :

Prélèvement (A remplir par le préleveur) :
- Prélever entre 8H et 13H
- Prélever 4ml (minimum 2mL) de LCR par ponction lombaire.
- **Date** :
- **Tube** : Sarstedt 10 mL polypropylène*.
- **Aspect du LCR** :
 - Clair
 - Trouble
 - Sanglant
 - Purulent
- **Envoi immédiat au laboratoire sur GLACE**

Paramètres demandés :
- **TAU**
- **P-TAU**
- **Abeta42**

Attention :
Signaler toute suspicion de Maladie de Creutzfeld Jacob.
En l'absence de renseignements cliniques, le prélèvement ne sera pas traité.

Si arrivée après 16 heures :
Ranger le prélèvement au frigo à 4°C au RTE dans le compartiment du secteur de neurobiologie

UF de neurobiologie : traitement preanalytique
- **Reception au laboratoire** :
- **Constrôle à la réception** :
 - **Temps** :
 - **Délai inférieur à 4 heures** :
- **Centrifugation** :
 - **Tube** : Sarstedt ref 62.610.201
 - 1000g, 10 minutes, 4°C, sans frein :
 - **frein** :
 - **Aspect du LCS après centrifugation** :
 - **Clair**
 - Hémolysé
 - Trouble
 - Culot hématique
 - Culot leucocytaire
- **Aliquotage** :
 - **Aliquotes de 400 µL en tube Eppendorf polypropylène 1,5 mL**
- **Congelation des tubes** :
 - **Température** :
 - **DATE** :
- **Nom du technicien** :

Données biologiques du LCS :
- **Protéinorachie** :
- **Cytologie** :

*UF DE NEUROBIOLOGIE : TRAITEMENT PREANALYTIQUE

PRELEVEMENT de LCR – FICHE DE TRACABILITÉ – CHRU de Lille
Annexe 2 : Anticorps utilisés pour la technique ELISA sandwich de Aβ1-42, Tau et P-Tau
Contexte : Le diagnostic biologique de la maladie d'Alzheimer repose sur l'interprétation de trois marqueurs biologiques (Aβ1-42, Tau et P-Tau) dosés dans le liquide cérébro-spinal. Dans certains cas, les discordances de résultats entre ces marqueurs, rendent le test non informatif pour le clinicien. L'objectif de ce travail est d'étudier l'intérêt du dosage du peptide Aβ1-40 et son intégration dans le rapport Aβ1-42/Aβ1-40 pour améliorer l'informativité du diagnostic biologique de la maladie d'Alzheimer chez les patients dont le profil biochimique est discordant.

Méthode : L'étude a été réalisée sur les patients des centres mémoire de recherche et de ressources de Paris, Lille et Montpellier. Les quatre marqueurs biologiques ont été dosés par une technique ELISA selon un protocole standardisé entre les trois centres. Le diagnostic clinique a été posé indépendamment des résultats des dosages. La valeur seuil du rapport Aβ1-42/Aβ1-40 qui optimise la sensibilité et la spécificité a été calculée par une courbe ROC chez les patients dont le profil biochimique était discordant. Une nouvelle interprétation des profils discordants a été proposée en substituant Aβ1-42 par le rapport Aβ1-42/Aβ1-40.

Résultats : Sur les 456 patients de la cohorte, 242 (53%) avaient un diagnostic de maladie d'Alzheimer et 113 (24.8%) avaient un profil biochimique discordant. La valeur seuil du rapport Aβ1-42/Aβ1-40 était de 0.059 [0.057; 0.073] avec une aire sous la courbe ROC égale à 0.81. L'utilisation des trois marqueurs biologiques (rapport Aβ1-42/Aβ1-40, Tau et P-Tau) permettait de reclasser 83 (73.5%) des 113 profils biochimiques discordants en tests informatifs, dont 67 étaient bien classés en fonction du diagnostic clinique. Le nombre de profils informatifs est passé de 298 (65%) à 381 (83%), soit une augmentation de l'informativité de 18%.

Conclusion : Le rapport Aβ1-42/Aβ1-40 a donc un intérêt pour améliorer l'informativité du diagnostic biologique de la maladie d'Alzheimer lorsque les profils biochimiques des marqueurs du LCS sont discordants.