THÈSE POUR LE DIPLÔME D'ÉTAT
DE DOCTEUR EN MÉDECINE

TRANSLOCATION BACTERIENNE POST-MORTEM : UNE APPROCHE BACTERIOLOGIQUE ET MEDICO-LEGALE (ETUDE PRELIMINAIRE)

Présentée et soutenue publiquement le 12 juin 2013

Par Vadim MESLI

Jury

Président : Monsieur le Professeur GOSSET
Assesseurs : Monsieur le Professeur FRIMAT
Monsieur le Professeur HEDOUIN
Madame le Professeur SOBASZEK
Monsieur le Docteur DESSEIN

Directrice de Thèse : Madame le Docteur NEUT
Table des matières

Abréviations .. 13
Introduction .. 14
1. Phénomènes cadavériques ... 15
 1.1 Décomposition du cadavre .. 15
 1.2 Décroissance thermique .. 17
 1.3 Modifications du métabolisme ... 19
2. Microbiote intestinal humain .. 21
 2.1 Microbiote de l'estomac ... 23
 2.2 Microbiote du duodénum et du jéjunum ... 23
 2.3 Microbiote de l'iléon .. 24
 2.4 Microbiote du côlon .. 24
3. Translocation bactérienne intestinale .. 25
 3.1 Mécanismes physiopathologiques .. 25
 3.2 Facteurs responsables de translocation bactérienne .. 27
 3.3 Translocation bactérienne chez l'Homme ... 29
4. Objectifs de l'étude .. 30
5. Matériel et méthodes .. 32
 5.1 Population ... 32
 5.2 Critères d'inclusion .. 32
 5.3 Critères d'exclusion ... 33
 5.4 Réalisation des prélèvements .. 33
 5.5 Analyse bactériologique .. 35
 a. Mise en culture sur gélose .. 36
 b. Mise en culture en tube et en flacon .. 37
 c. Identification bactérienne ... 38
6. Résultats ... 41
 6.1 Résumé des cas inclus ... 41
 6.2 Identification bactérienne ... 47
 6.3 Observations au microscope .. 50
7. Discussion ... 55
 7.1 Qualité et quantité de bactéries retrouvées ... 55
 a. Mises en évidences ... 55
b. Limites ... 57

7.2 Influence du refroidissement sur la sélection des bactéries ... 59

7.3 Influence de la réfrigération sur la température corporelle ... 61
 a. Le délai entre la mort et la mise en réfrigération ... 62
 b. Le délai entre la mise en réfrigération et l'atteinte d'une température de +4°C 63

7.4 Evaluation des critères d'inclusion et d'exclusion .. 66
 a. Critères d'inclusion ... 66
 b. Critères d'exclusion .. 67

7.5 Précautions de réalisation du prélèvement .. 68

7.6 Améliorations du protocole bactériologique ... 68

7.7 Confrontation des résultats aux données de la littérature .. 70

7.8 Champs d'application .. 72
 a. Les examens post-mortem bactériologiques aux fins de détermination de la cause du décès.. 72
 b. La prévention du risque biologique en salle d'autopsie ... 73
 c. Les dosages toxicologiques post-mortem .. 74
 d. Les complications infectieuses chez les patients recevant une allogreffe 74
 e. L'approche des maladies infectieuses en paléopathologie ... 75

Conclusion .. 76

Bibliographie .. 78

Annexes ... 85
Abréviations

ATP : Adénosine TriPhosphate

BH : *Brain Heart* ou "Cœur Cerveau"

CS Aéro : Columbia-Sang incubée en Aérobiose

CS Ana : Columbia-Sang incubée en Anaérobiose

DPM : Délai *Post-Mortem*

DPM-p : Délai *Post-Mortem-prélèvement*

EDTA : Ethylène Diamine Tétra-Acétique

GHB : acide Gamma-HydroxyButyrique

IMC : Indice de Masse Corporelle

PCR : *Polymerase Chain Reaction* ou réaction en chaîne par polymérase

TB : Translocation Bactérienne

UFC : Unités Formant Colonie

WW : Wilkins West
Introduction

Les phénomènes microbiologiques intervenant dans la putréfaction du cadavre sont peu décrits dans la littérature scientifique. Cependant, ils ont des conséquences en pratique médico-légale dans l'évaluation du moment de la mort, dans l'interprétation des examens bactériologiques post-mortem, en paléopathologie, dans la prévention du risque biologique en thanatologie ou même dans le domaine de la transplantation d'organes.

La décroissance thermique corporelle post-mortem et l'anaérobiose semblent être les facteurs déterminants de la décomposition du corps. Ces conditions, associées à la richesse et à la composition du microbiote intestinal, sont en faveur d'une prolifération bactérienne post-mortem endogène d'origine digestive.

Dans ce contexte, cette étude préliminaire a pour but de préciser l'implication bactérienne dans la décomposition précoce du corps, d'un point de vue quantitatif, qualitatif et cinétique.
1. Phénomènes cadavériques

La mort, dont la définition précise est complexe, est marquée par un arrêt définitif et irréversible des fonctions vitales (cardio-vasculaire, respiratoire et encéphalique). Elle implique un arrêt de la circulation sanguine et de l'apport en oxygène au niveau macroscopique pour les tissus et au niveau microscopique pour les cellules. L'organisme humain passe ainsi d'un environnement aérobie (en présence d'oxygène) à un environnement anaérobie (en absence d'oxygène) (1). Le décès est précédé d'une période d'agonie d'une durée variable en fonction des causes de la mort. Cette période est caractérisée par une hypoxie entraînant une souffrance poly-viscérale et une altération progressive des fonctions vitales de l'organisme, jusqu'au trépas (2).

L'ensemble des changements qui surviennent après le décès est regroupé sous la dénomination de modifications post-mortem ou phénomènes cadavériques. Ces modifications ont une chronologie relativement standardisée, bien que pouvant varier en vitesse et en intensité, en fonction notamment de caractères individuels et environnementaux (1,3).

1.1 Décomposition du cadavre

La dégradation du corps post-mortem est caractérisée par différents stades traditionnellement décrits (1,3) :

- le cadavre initialement « frais », sans signe macroscopique de décomposition,
- une phase de décomposition initiale,
- une phase de décomposition avancée,
- une phase de dessiccation (déshydratation) et de squelettisation.
Lors de la décomposition du cadavre, les modifications corporelles communes qui sont classiquement observées sont (1,4) :

- le dégagement d’une odeur caractéristique,
- une modification de la couleur de la peau débutant initialement en région abdominale, communément appelée tache verte abdominale,
- la présence de gaz dans les tissus, qui peut se manifester par une circulation veineuse posthume ou encore une distension des tissus.

Deux autres phénomènes cadavériques peuvent également être observés en fonction des conditions environnementales : la momification et la transformation adipocireuse :

- la momification est une transformation du corps par dessiccation précoce et accélérée, pouvant s'observer de façon concomitante avec d'autres phases de décomposition. Elle est favorisée par un milieu sec et donne à la peau un aspect brunâtre et durci. Le corps ou certaines parties du corps peuvent alors se déshydrater sans se putréfier ou se déshydrater après une phase putréfactive.

- la transformation adipocireuse du cadavre correspond à un mécanisme de transformation des graisses en présence d'eau, appelé saponification. Elle est d'autant plus importante quand l'environnement est chaud et humide, quand les graisses sont en grande quantité ou lorsque l'environnement est anaérobie. Certains métabolites de bactéries aérobies et anaérobies jouent un rôle important dans ce phénomène, tels que certains acides gras (10-hydroxystéarique et 10-hydroxy palmitique) (5).
Dans le cadre d'études sur l'odeur du cadavre, l'analyse des composés organiques volatils autour du corps (dans le sol et dans l'air) a permis de mettre en évidence plusieurs métabolites spécifiques des bactéries anaérobies. Il a été retrouvé du méthane et des acides gras volatils tels l'acide butyrique, l'acide iso-butyrique, l'acide propionique, l'acide valérique ou l'acide isovalérique. Des produits de la dégradation anaérobie des acides aminés sont également retrouvés, comme les acides phénylacétique et phénylpropionique (6-9). Ces deux acides ont également été mis en évidence lors d'analyses des fluides de décomposition de cadavres de porcs, alors qu'ils étaient déposés sur une matrice dépouvrve de terre (10).

1.2 Décroissance thermique

La température corporelle du vivant, aux alentours de +37,2 degrés Celsius (°C) en dehors de cas particuliers, va chuter progressivement après la mort pour s'équilibrer avec la température ambiante. Cette déperdition thermique est décrite à environ 1°C par heure, avec un plateau thermique initial, puis une phase de décroissance thermique rapide et un plateau thermique terminal. Le revêtement cutané se refroidit assez rapidement, mais la température centrale dépend des échanges thermiques entre la peau et les tissus plus profonds (muscles, organes…). La vitesse de décroissance thermique est variable en fonction de multiples caractères individuels et environnementaux (11,12). Ces principaux critères de variation sont le poids (et l'épaisseur de la couche de graisse), le port de vêtements, les températures initiales corporelle et ambiante, la posture du corps et les conditions extérieures (exposition au vent, humidité…) (1).
Ainsi, certains facteurs thermiques sont reconnus comme accélérant la vitesse de décomposition du cadavre (13,14) :

des facteurs exogènes :
- une température ambiante élevée, qu'il s'agisse d'un corps retrouvé dans un domicile chauffé ou ayant plusieurs couches de vêtements, dans un véhicule, en extérieur lors de fortes températures (période d'été), ou lorsque le corps a été soumis aux flammes d'un incendie…
- une absence de réfrigération du corps.

des facteurs endogènes :
- une température corporelle initiale élevée, par exemple lors d'une hyperthermie, de la consommation de certaines drogues (cocaïne, amphétamines, neuroleptiques…), d'une infection…
- l'obésité, du fait de l'isolation thermique procurée par les couches adipeuses,
- le diabète et l'hyperglycémie. Cela pourrait être expliqué par un développement bactérien facilité par une fermentation du glucose (13).

A l'inverse, les situations entraînant une température plus basse (immersion, réfrigération, congélation…) sont reconnues comme retardant la décomposition du cadavre (3).

Le délai *post-mortem* (DPM) représente le temps écoulé entre le moment de la mort et le moment où le corps est examiné. En pratique médico-légale, pour des DPM courts, la décroissance thermique est un élément clé de l'estimation du moment

1.3 Modifications du métabolisme

Les enzymes humaines, qui ont un maximum d’activité aux alentours de +37°C, deviennent de moins en moins efficaces au fur et à mesure que la
température diminue. En revanche, les enzymes bactériennes sont capables de fonctionner sur une gamme de températures plus large (18).

Ainsi, après la mort, le métabolisme cellulaire aérobie laisse place à des conditions d’anaérobiose et de température défavorables au métabolisme par les enzymes humaines mais favorables à une multiplication bactérienne. Ceci est confirmé macroscopiquement par la présence de gaz dans les tissus, ainsi que par la détection de substances spécifiques d’un métabolisme bactérien anaérobie autour du cadavre (8,9).
2. Microbiote intestinal humain

Le microbiote intestinal humain, anciennement appelé flore intestinale, est défini par l'ensemble des micro-organismes (bactéries principalement) contenus dans le tube digestif. Le microbiote est constitué de 10^{12} à 10^{14} bactéries, soit plus de dix fois le nombre de cellules de l'organisme humain. Sur le plan qualitatif, les progrès récents de la biologie moléculaire et de la génomique ont permis de mieux apprécier sa composition et sa physiopathologie (21–24).

Le tube digestif du nouveau né est stérile à la naissance. Il est cependant rapidement colonisé par les micro-organismes rencontrés dès le début de la vie. Le premier contact avec le microbiote de la mère débute dès l'accouchement, puis lors du contact cutané, de l'allaitement, etc. Il est considéré que le microbiote humain n'arrive pas à maturation avant environ l'âge de 2 ans (25,26).

Les bactéries présentes à l'état normal dans le tube digestif sont appelées commensales, à l'opposé des bactéries dites pathogènes. Un véritable écosystème est constitué entre ces micro-organismes et l'hôte humain. L'hôte ingère des aliments permettant aux bactéries de se reproduire et les bactéries produisent des substances influant sur le métabolisme (27). Le microbiote, dorénavant considéré comme un organe à part entière en regard de ses capacités métaboliques, a des effets bénéfiques sur l'organisme humain (on parle alors de symbiose ou eubiose). À l'inverse, les déséquilibres du microbiote (ou dysbiose) vont provoquer des effets néfastes (28).
Les études des selles par des marqueurs moléculaires spécifiques d'espèces ou de souches bactériennes mettent en évidence des différences à la fois significatives et suffisamment marquées pour pouvoir distinguer un individu d'un autre. L'utilisation de marqueurs moléculaires de phyla (deuxième niveau de classification des espèces vivantes) ou de genres retrouve au contraire des similitudes entre les individus, avec cependant des variations en fonction de l'âge, des pays, de certains régimes ou maladies (22,24,29).

Les bactéries prédominantes du microbiote intestinal, *Bacteroides* et *Bifidobacterium*, digèrent les résidus alimentaires en anaérobiose (on parle de fermentation saccharolytique). Cependant, il persiste une présence constante de bactéries protéolytiques, telles les entérobactéries, *Enterococcus*, *Clostridium* ou encore *Fusobacterium* (30). Si certaines d'entre elles sont des pathogènes potentiels, une symbiose est malgré tout possible, dans des conditions physiologiques, grâce à un équilibre entre l'hôte et les micro-organismes (31).

Tout au long du tube digestif, la quantité et la diversité d'espèces bactériennes augmentent pour arriver à un maximum de biodiversité au niveau du côlon, avec plus de 100 espèces de bactéries chez chaque individu. Cette évolution est schématisée sur la figure 1.
2.1 Microbiote de l'estomac

Le contenu de l'estomac humain est très acide, son pH étant aux alentours de 2. Ces conditions physico-chimiques expliquent qu'il ne contienne que peu de bactéries endogènes, telles que *Helicobacter*, des streptocoques ou des lactobacilles. Ces bactéries ne jouent un rôle chez l'humain qu'en cas de situation pathologique, comme l'hypochlorhydrie par exemple (27).

2.2 Microbiote du duodénum et du jéjunum

Cette partie du tube digestif est marquée par la présence d'acides biliaires. Le nombre de bactéries est compris entre 10^2 et 10^5 Unités Formant Colonie (UFC)/g.
Les espèces prédominantes sont aéro-anaérobies facultatives, on y retrouve particulièrement les streptocoques et les lactobacilles (32).

2.3 Microbiote de l'iléon

Les espèces sont plus nombreuses qu'en amont, entre 10^3 et 10^7 UFC/g, avec des anaérobies qui sont ici prédominants. Des *Bacteroides*, des entérobactéries et des streptocoques coexistent et sont classiquement identifiés dans cette portion du tube digestif (27,33).

2.4 Microbiote du côlon

Après le passage de la valvule iléo-caecale, les espèces anaérobies se développent fortement, devenant prédominantes. Le transit est lent, laissant le temps aux bactéries d'interagir avec leur environnement et de se développer. Le nombre de bactéries atteint ici un maximum, jusqu'à 10^{12} UFC/g. Des différences sont également observées au sein même du côlon, entre les localisations caecale ou colique. On observe entre ces deux parties, une multiplication par 100 du nombre d'anaérobies strictes. L'écosystème se rapproche alors de celui décrit dans les selles. (27,34)
3. Translocation bactérienne intestinale

Le passage de bactéries à travers la muqueuse intestinale a été mis en évidence dès 1950 grâce à un modèle expérimental de péritonite chimique animale (35). Suite à de multiples études cherchant à préciser ce phénomène, la définition de la translocation bactérienne (TB) intestinale a été revue plusieurs fois au cours des deux dernières décennies. Il est actuellement admis que la TB est définie par le passage de bactéries viables ou de fragments bactériens à travers le tube digestif, à destination des ganglions mésentériques (où les bactéries sont le plus souvent éliminées) puis dans la circulation systémique (36,37). La TB pourrait alors provoquer une inflammation systémique voire un sepsis chez l'humain vivant (38). Cependant, la TB intestinale n'est pas systématiquement associée à des situations pathologiques. Elle a en effet été également observée chez des individus sains, sans aucune conséquence négative décelable (39,40).

Des bactéries aussi bien aérobies qu'anaérobies sont capables de TB. Certaines bactéries ont un pouvoir de translocation élevé, notamment les entérobactéries, les Enterococcus ou les Clostridium (41).

3.1 Mécanismes physiopathologiques

Les bactéries se situent dans la lumière intestinale et doivent traverser plusieurs "obstacles" jusqu'à la lamina propria (tissu conjonctif sous l'épithélium). Ces principaux obstacles sont :
- les bactéries commensales, présentes en grande quantité, qui constituent à elles seules une barrière quantitative d'accès à l'épithélium intestinal (28).

- le mucus, substance visqueuse produite par des cellules épithéliales spécialisées, recouvre la surface de l'épithélium du tractus digestif. Il constitue une barrière physique et inhibe également l'adhérence des micro-organismes à l'épithélium. Son épaisseur est variable et diminue de l'antre de l'estomac jusqu'au jéjunum, pour augmenter et atteindre une épaisseur maximale dans le côlon (42).

- la traversée des entérocytes, qui peut se faire par deux voies : un passage paracellulaire (au travers des jonctions serrées) ou un passage transcellulaire (à travers la cellule). La voie transcellulaire a été plus classiquement observée chez le vivant, à travers des entérocytes intacts (43).

Après avoir traversé la lamina propria, les bactéries peuvent accéder à la circulation systémique par deux moyens : par le système veineux jusqu'à la veine porte, ou par les voies de drainage lymphatique. La voie lymphatique paraît privilégiée, au regard de la fréquence plus importante de cultures positives dans les ganglions mésentériques que dans le sang portal dans la littérature (36,44,45).

Parallèlement, le système immunitaire digestif est également impliqué. Il est principalement constitué de plaques de Peyer, composées de follicules lymphoïdes de type B. Ces plaques sont situées entre la muqueuse et la sous-muqueuse et sont surmontées par un dôme riche en lymphocytes B, T et en macrophages. Ce dôme contient également des cellules M, capables d'endocytter des agents bactériens. Après avoir dépassé le pôle basal des cellules épithéliales, les bactéries se retrouvent au contact des autres cellules constituant le tissu lymphoïde associé au
tube digestif (*gut associated lymphoid tissue* ou GALT). Toutes ces interactions permettent le développement d’une immunité locale pouvant être transférée à l’ensemble de l’organisme de l’hôte (36,46).

3.2 **Facteurs responsables de translocation bactérienne**

Une TB est possible lorsque la barrière que constitue le tube digestif est altérée. On peut distinguer trois grands types d’atteintes, dont le caractère théorique a été confirmé expérimentalement (36,37) :

- **une altération de la muqueuse intestinale**

La nutrition entérale et parentérale, provoquant une atrophie muqueuse, est associée à des TB (47). Les ischémies digestives, telles qu’elles peuvent être rencontrées dans les brûlures cutanées étendues, facilitent les TB (48). La diminution de la perfusion sanguine intestinale provoquée par hyperpression intra-abdominale chez le rat induit également des TB (49).

Le mucus s’oppose à l’adhérence des bactéries à l’Épithélium. Une facilitation de la TB s’observe ainsi lors d’altérations de la composition ou de la sécrétion du mucus comme dans les maladies inflammatoires du tube digestif (50).

- **une modification du microbiote intestinal**

De multiples modèles expérimentaux de pullulation microbienne ont été associés à des TB (36). Une antibiothérapie, en détruisant des bactéries commensales, peut augmenter la population de bactéries dont les pouvoirs pathogène et de translocation
sont plus importants (comme les entérobactéries, les entérocoques et les
Clostridium) et faciliter une TB (51).

- **une atteinte des défenses immunitaires**

L’altération de la voie lymphocytaire T joue un rôle dans la TB. Une déplétion
macrophagique ou lymphocytaire CD4+ ou CD8+ est en effet corrélée à l’apparition
de TB (52).

Une diminution de la production d’immunoglobulines A (anticorps sécrétés par les
muqueuses, diminuant l'adhérence des bactéries) facilite également la survenue de
TB (47,53).

Les principaux facteurs et mécanismes impliqués dans la TB sont schématisés
dans les figures 2 et 3.

![Diagramme des mécanismes impliqués dans la TB](image)

Figure 2 : Mécanismes et facteurs impliqués dans la TB (adaptée de (54))
3.3 Translocation bactérienne chez l'Homme

De nombreuses recherches ont été effectuées dès lors que des situations cliniques présentaient un ou plusieurs des facteurs favorisants la TB. Ainsi, la TB a été mise en évidence dans plusieurs états pathologiques chez l'Homme : choc hémorragique (56), maladies inflammatoires chroniques de l'intestin telles que la maladie de Crohn (41), infection chronique par le Virus de l'Immunodéficience Humaine de type 1 ou 2 (57,58), le virus de l'hépatite B ou de l'hépatite C (59), réaction du greffon contre l'hôte (60), occlusion intestinale (61), diabète (62) ou encore cancer colorectal (63).
4. Objectifs de l'étude

Comme cela a été précédemment décrit, les phénomènes cadavériques sont caractérisés par des conditions d’anaérobiose et de baisse de la température corporelle. Des substances spécifiques du métabolisme anaérobie et du métabolisme de protéolyse ont été détectées autour du cadavre de mammifères ou de l’Homme, indépendamment de l’environnement (9). De façon standardisée, les signes de décomposition macroscopique débutent en région abdominale, avec une présence de gaz dans les tissus. Ces processus sont accélérés en fonction de la température et de l’hygrométrie. De plus, le microbiote intestinal représente la source la plus riche et variée de bactéries se développant en anaérobiose chez l’humain, avec des bactéries protéolytiques constamment présentes. Tous ces éléments convergent vers une origine bactérienne, endogène et intestinale de la décomposition du corps. La période d’agonie puis l’arrêt définitif de l’organisme après la mort impliquent des altérations cellulaires et immunitaires au niveau digestif qui sont des facteurs favorisants avérés de TB. Cette TB est vraisemblablement le mécanisme de passage des bactéries à travers le tube digestif.

Les données de la littérature avancent que les bactéries anaérobies de provenance digestive sont la cause de la décomposition précoce du cadavre (1,3,4). Il n’a cependant pas été retrouvé d’étude d’identification et de quantification bactérienne chez le cadavre humain permettant de prouver cette hypothèse.

Or, les phénomènes cadavériques macroscopiques et la décroissance thermique du corps sont les éléments les plus utilisés en pratique courante médico-légale, afin d’évaluer le moment de la mort. (1,3,4).
Dans ce contexte, il apparaît intéressant d'identifier les bactéries précocement présentes dans le sang après la mort, de les quantifier et d'en apprécier la cinétique. La mise en évidence précoce de bactéries d'origine digestive conforterait notre hypothèse d'un envahissement du sang par ces bactéries dû à un mécanisme de TB débutant dès la phase d'agonie. Ces éléments pourraient apporter des informations supplémentaires dans l'évaluation du moment de la mort en pratique médico-légale quotidienne.
5. Matériel et méthodes

5.1 Population

Entre le 15 septembre 2012 et le 15 mars 2013, tous les corps placés à l'Institut Médico-Légal du CHRU de Lille, pour lesquels une autopsie médico-légale avait été demandée par la Justice, ont été examinés. Nos analyses étaient issues de prélèvements demandés par l'autorité judiciaire.

5.2 Critères d'inclusion

Du 15 septembre 2012 au 31 janvier 2013, les critères d'inclusion étaient les suivants :
- un sujet âgé de plus de deux ans au moment de la mort,
- un DPM connu et inférieur à 24 heures,
- une heure de décès connue, avec une marge d'erreur d'une heure au maximum.

Afin d'étendre le recrutement, les critères d'inclusion étaient ensuite élargis.

Du 1er février 2013 au 15 mars 2013, les critères d'inclusion étaient alors les suivants :
- un sujet âgé de plus de deux ans au moment de la mort,
- un DPM connu et inférieur à 72 heures,
- une heure de décès connue, avec une marge d'erreur de deux heures au maximum.

5.3 Critères d'exclusion

Pour toute la période de l'étude, les critères d'exclusion étaient les suivants :
- une perforation de la paroi digestive connue ou suspectée,
- un décès d'origine infectieuse ou dans un contexte fébrile connu,
- une antibiothérapie connue et documentée,
- un décès dans un contexte d'incendie,
- la présence de plaies profondes souillées par de la terre.

5.4 Réalisation des prélèvements

Pour tout corps correspondant à nos critères, un prélèvement sanguin de 8 mL dans 2 tubes secs (sans anti-coagulant) de 4 mL chacun, était effectué par ponction dans la veine sous-clavière.

L'antisepsie cutanée était réalisée systématiquement en quatre temps et devait être strictement respectée :
- une détersion au savon doux,
- un rinçage à l'eau stérile,
- un séchage,
- une antisepsie avec du Dakin®.
Des compresses et des gants stériles étaient utilisés pour réaliser ces opérations. Une hygiène des mains préalable était assurée par friction avec une solution hydro-alcoolique. L'aiguille et la seringue pour la ponction veineuse étaient neuves et stériles. Les tubes étaient remplis intégralement sans que ne puisse persister de bulle d'air. Préalablement à ce remplissage des tubes, ceux-ci bénéficiaient d'une désinfection par un passage d'alcool à 70° afin d'assurer la stérilité des manœuvres et manipulations.

Chaque corps inclus a été décrit avec les dates et heures de décès et de prélèvement, le sexe, l'âge de décès, le poids, la taille, les circonstances de découverte, la cause de la mort et la présence d'éventuels antécédents médico-chirurgicaux.

Nous avons constitué un recueil de données pour chacun de ces corps, qui était composé de :

- la date et l'heure du prélèvement,
- la date et l'heure du décès, avec le degré de précision,
- la notion d'une réfrigération avant le prélèvement, et si oui, ses horaires et le détail de la température,
- la température corporelle en °C par voie rectale lors du prélèvement, s'il n'y avait pas eu de réfrigération préalable,
- le sexe,
- l'âge du sujet au moment du décès,
- les circonstances de découverte du corps,
- les antécédents médico-chirurgicaux connus,
- la cause de la mort après autopsie.

A l'Institut Médico-Légal, chaque corps est associé à un numéro. Les informations recueillies ont été saisies manuellement dans un document papier (annexe n°1) qui était identifié uniquement par le numéro de l'Institut Médico-Légal, afin de garantir une anonymisation des données. Les sources d'informations étaient les éléments communiqués par les enquêteurs, l'éventuelle levée de corps et les données de l'autopsie. Le temps écoulé entre l'heure du décès et celle du prélèvement définissait la valeur du délai post-mortem-prélèvement (DPM-p) pour chaque cas.

Les échantillons sanguins étaient transportés à température ambiante au laboratoire de bactériologie dans les 8 heures qui suivaient le prélèvement, avec un délai maximum de 24 heures.

5.5 Analyse bactériologique

Les échantillons étaient mis en culture pendant 5 jours. Quatre milieux étaient utilisés (composition des milieux de culture en annexe n°2) :

- 0,1 mL de sang était étalé sur une gélose Columbia au sang incubée en aérobiose (CS Aéro) à +37°C,
- 0,1 mL de sang était étalé sur une gélose Columbia au sang incubée en anaérobiose (CS Ana) à +37°C,
- 1 mL de sang était introduit dans un tube 10 mL de bouillon "Cœur Cervelle" ou Brain Heart (BH) incubé en anaérobiose à +37°C,
- 5 mL de sang étaient introduits dans un flacon de 100 mL de bouillon BH incubé en anaérobiose à +37°C.

a. Mise en culture sur gélose

Apres étallement de 0,1 mL de sang sur la gélose, la boîte était incubée à +37°C pendant 5 jours : à l'air pour la gélose CS Aéro, en anaérobiose pour la gélose CS Ana. L’anaérobiose était obtenue en jarre par l'addition d’un sachet Anaerogen (OXOID) ou dans une enceinte anaérobie (Forma Scientific). L'observation de la gélose et le comptage des colonies étaient effectués tous les jours pour la gélose CS Aéro. La gélose CS Ana était observée et les colonies décomptées au bout du cinquième jour, afin de respecter l'anaérobiose. Dès qu'une nouvelle colonie s'était développée, afin de pouvoir l'isoler, elle était repiquée (c'est-à-dire prélevée et réensemencée) dans un milieu d'enrichissement, le milieu Wilkins-West (WW) profond (annexe n°2). Un numéro d'identification était attribué à chaque colonie isolée. L'ensemencement devait être fait sur toute la hauteur du milieu, alors que celui-ci était chaud et liquide, avant qu'il ne se fige. Trois comportements pouvaient être observés sur ce type de tube, permettant de distinguer les bactéries :

- aéro-anaérobies facultatives, qui cultivent (c'est-à-dire qu'elles se développent et sont visibles) sur toute la hauteur de la colonne,
- anaérobies strictes, qui ne cultivent pas dans le centimètre le plus haut situé sur la colonne (car au contact de l'oxygène),
- aérobies strictes, qui ne cultivent qu'en surface, au contact de l'oxygène.

Afin de pouvoir identifier la colonie isolée, une partie du milieu WW profond (où le développement bactérien était présent) était réensemencée dans un autre
milieu d'enrichissement, le milieu WW liquide (annexe n°2). Ce milieu était recouvert d'une couche de paraffine pour les bactéries anaérobies. La couche de paraffine permettait de respecter l'anaérobie et de visualiser la production bactérienne éventuelle de gaz (dans ce cas, la couche de paraffine montait dans le tube sous l'effet du gaz). Le seuil de détection était ici de 1 bactérie dans 0.1 mL, soit de 10 bactéries/mL de sang.

b. Mise en culture en tube et en flacon

1mL de sang était introduit dans un tube contenant 9mL de bouillon BH, incubé en anaérobiose à +37°C. Le milieu était préalablement bouilli, afin de chasser le plus d'oxygène possible. Puis il était paraffiné après introduction du sang pour pouvoir préserver l'anaérobie et détecter la présence de gaz. Ce milieu d'enrichissement permettait de détecter une bactérie pour 1mL de sang.

5mL de sang étaient introduits dans un flacon contenant 95mL de bouillon BH, incubés en anaérobiose à +37°C. Le flacon étant d'une contenance de 100mL, l'anaérobie était respectée dès la fermeture du flacon. Ce milieu d'enrichissement permettait de détecter une bactérie pour 5mL de sang.

En cas de développement bactérien dans ces milieux, le liquide devenait trouble. Dans ce cas, au bout de 48 à 72 heures, un isolement bactérien était effectué. Une goutte du milieu était alors étalée en stries, sur deux géloses : une gélose CS Ana à +37°C et une gélose CS Ana à la Néomycine à +37°C. L'ajout de Néomycine facilitait l'obtention de bactéries anaérobies en inhibant la culture des bactéries aérobies.
c. Identification bactérienne

Bactéries aéro-anaérobies facultatives et aérobies strictes

Une coloration de Gram était effectuée (annexe n°3), suivie d'une observation au microscope optique au grossissement x1000. Il s'agissait d’une double lecture des lames, dont une en aveugle par un bactériologiste de notre laboratoire. Quatre formes de bactéries pouvaient être observées : cocci à Gram positif ou négatif, bacilles à Gram positif ou négatif.

- Cocci à Gram négatif (rares chez l'humain) : l'identification bactérienne était assurée par l'utilisation de galeries API.

- Bacilles à Gram négatif : l'identification bactérienne était faite dans un premier temps dans le milieu de Kligler (annexe n°4) puis par des galeries API 20 E (pour les Enterobactéries) et API 20 NE (pour les Non Entérobacités) (annexe n°5).

- Bacilles ou cocci à Gram positif : dans ce cas, un bouillon Cœur Cervelle était ensemencé pour faire un test à la catalase (annexe n°4). Cette première phase d'identification permettait de connaître le genre de la bactérie. Afin de pouvoir préciser l'espèce, des galeries d'identification étaient utilisées : API Staph (pour les Staphylococcus), API Strep (pour les Streptococcus).

Bactéries anaérobies strictes

Les colonies ayant poussé sur les géloses en anaérobie étaient repiquées et ensemencées dans un milieu WW liquide en anaérobie, une coloration de Gram
était effectuée et les lames étaient observées au microscope optique avec un grossissement x1000. L'identification bactérienne était par la suite assurée par spectrométrie de masse MALDI-TOF (64) (annexe n°6).

L'expression des résultats quantitatifs des bactéries identifiées était donnée en UFC/mL. Une UFC représente une bactérie viable, capable de former une colonie dans un milieu favorable.

Le protocole expérimental bactériologique est synthétisé dans le schéma 1.
Schéma 1 : Protocole expérimental d'isolement et d'identification bactérienne

- Prélèvement sanguin 8mL
- Gélose CS Aéro (0,1mL)
 - Observation quotidienne + comptage colonies
 - WW profond
- Gélose CS Ana (0,1mL)
 - Observation J5 + comptage colonies
- Tube (1mL dans 10mL) Coeur-Cervelle + paraffine
- Flacon (5mL dans 100mL)
 - Observation à 48/72h
 - Gram + Microscope
- Cœur-Cervelle + paraffine
- Gélose CS Ana
 - Anaérobies
 - WW liquide + paraffine
 - Gram + Microscope
 - Spectrométrie de masse
 - Bacille ou Cocci Gram+
 - Test catalase
 - Galerie API
 - Citrate-Indole
 - Galerie API 20E
 - Galerie API 20NE
 - E.coli
 - Anaérobies facultatifs + Aérobies stricts
 - WW liquide
 - Gram + Microscope
 - Bacille Gram-
 - Cocci Gram-
 - Kligler
 - Galerie API
 - Galerie API 20E
 - Galerie API 20NE
 - E.coli

E. coli
6. Résultats

Les prélèvements ont été réalisés sur 8 cadavres : 2 entre le 15 septembre 2013 et le 31 janvier 2013, 6 entre le 1er février 2013 et le 15 mars 2013.

Une prolifération bactérienne a été mise en évidence pour 6 prélèvements. 24 souches ont été identifiées, appartenant à 21 espèces différentes. Tous les germes retrouvés étaient anaérobies stricts (n=11) ou aéro-anaérobies facultatifs (n=13). Aucun germe retrouvé n’était aérobie strict. Un prélèvement (n°1) a entraîné une culture positive par un germe de contamination cutanée (*Propionibacterium acnes*). Deux prélèvements (n°2 et n°6) n’ont révélé aucune espèce bactérienne (contamination inférieure au seuil de détection de 0,2 UFC/mL). Deux prélèvements (n°3 et n°4) ont atteint notre seuil maximal de quantification, soit 5000 UFC/mL. Les DPM-p étaient compris entre 8 heures et 69 heures.

6.1 Résumé des cas inclus

Corps n°1
- DPM-p : 8 heures (+/- 1 heure)
- Séjour en chambre froide avant prélèvement : non
- Température corporelle : +32,1°C
- Sexe : Féminin
- Poids : 46 kg
- Taille : 157 cm
- Age de décès : 69 ans
- Circumstances of discovery: death in a psychiatric institution, fecal vomiting
- Cause of death after autopsy: syndrome of asphyxiation by pulmonary edema and inhalation of fecal liquid resulting from an intestinal obstruction
- No known medical-surgical history
- Contamination bacteriological rate: 1500 UFC/mL
- Bacterium identified: *Propionibacterium acnes* (1500 UFC/mL)

Corps n°2
- DPM-p: 24 hours (± 1 hour)
- Stay in cold chamber before sample collection: yes, 18 hours before the sampling
- Sex: Male
- Weight: 81 kg
- Height: 184 cm
- Age of death: 36 years
- Circumstances of discovery: found on the floor, a rope was cut between the railing of an escalator and the neck of the subject
- Cause of death after autopsy: cranial trauma with extradural hematoma compressive in the context of a suicide hanging
- Known medical-surgical history: chronic alcoholism
- Bacteriological contamination rate: < 0.2 UFC/mL
- No bacterium identified
Corps n°3

- DPM-p : 28 heures et 30 minutes (+/- 1 heure)
- Séjour en chambre froide avant prélèvement : oui, pendant 24 heures avant prélèvement, à +4°C
- Sexe : Masculin
- Poids : 75 kg
- Taille : 167 cm
- Age de décès : 44 ans
- Circonstances de découverte : pendaison en centre de détention
- Cause de la mort après autopsie : asphyxie mécanique dans le cadre d’une pendaison suicidaire
- Pas d’antécédent médico-chirurgical connu
- Taux de contamination bactérienne = 5000 UFC/mL
- Bactéries identifiées : *Staphylococcus* sp. (10 UFC/mL), *Escherichia coli* (10 UFC/mL), *Bifidobacterium longum* (10 UFC/mL), *Streptococcus anginosus* (1 UFC/mL), *Bacteroides vulgatus* (0,2 UFC/mL)

Corps n°4

- DPM-p : 27 heures (+/- 1 heure)
- Séjour en chambre froide avant prélèvement : Oui, pendant 23 heures avant prélèvement, à +4°C
- Sexe : Féminin
- Poids : 101 kg
- Taille : 152 cm
- Age de décès : 59 ans
- Circonstances de découverte : corps surnageant dans une rivière
- Cause de la mort après autopsie : asphyxie par noyade
- Pas d'antécédent médico-chirurgical connu.
- Taux de contamination bactérienne = 5000 UFC/mL
- Bactéries identifiées : *Streptococcus oralis* (10 UFC/mL), *Enterobacter agglomerans* (10 UFC/mL), *Escherichia coli* (10 UFC/mL), *Klebsiella pneumoniae* (10 UFC/mL), *Clostridium perfringens* (10 UFC/mL), *Clostridium sordellii* (1 UFC/mL), *Enterococcus sp.* (0,2 UFC/mL), *Veillonella dispar* (0,2 UFC/mL), *Bacteroides thetaiotaomicron* (1 UFC/mL), *Bacteroides fragilis* (0,2 UFC/mL), *Bacteroides ovatus* (0,2 UFC/mL)

Corps n°5
- DPM-p : 48 heures et 30 minutes
- Séjour en chambre froide avant prélèvement : oui, pendant 43 heures et 30 minutes à +4°C avant le prélèvement
- Sexe : Féminin
- Poids : 71 kg
- Taille : 156 cm
- Age de décès : 48 ans
- Circonstances de découverte : décès en réanimation après un mois d'hospitalisation. Une antibiothérapie a été administrée pendant un mois, comportant une semaine d'AUGMENTIN® (Amoxicilline, Acide clavulanique), une semaine de TAZOCILLINE® (Piperacilline, Tazobactam) et d'AMIKLIN®
(Amikacine) et deux semaines de TIENAM® (Impémène, Cilastatine) et d'AMIKLIN®.

- Cause de la mort après autopsie : défaillance respiratoire suite à un œdème pulmonaire et une infection bronchique, associés à une fibrose pulmonaire.
- Pas d'antécédent médico-chirurgical connu.
- Taux de contamination bactérienne = 1 UFC / mL
- Bactérie identifiée : Clostridium haemolyticum (1 UFC/mL)

Corps n°6

- DPM-p : 17 heures et 30 minutes (+/- 1 heure)
- Séjour en chambre froide avant prélèvement : oui, à +4°C pendant 14 heures avant le prélèvement
- Sexe : Masculin
- Poids : 79 kg
- Taille : 193 cm
- Age de décès : 34 ans
- Circonstances de découverte : décès au domicile après un épisode de détresse respiratoire
- Cause de la mort après autopsie : hémopéricarde et hémothorax consécutifs à une dissection aortique
- Pas d'antécédent médico-chirurgical connu.
- Taux de contamination bactérienne < 0,2 UFC/mL
- Aucune bactérie identifiée
Corps n°7
- DPM-p : 63 heures et 30 minutes (+/- 2 heures)
- Séjour en chambre froide avant prélèvement : oui, 42 heures à +4°C avant prélèvement
- Sexe : Masculin
- Poids : 80 kg
- Taille : 181 cm
- Age de décès : 57 ans
- Circonstances de découverte : corps surnageant dans une rivière
- Cause de la mort après autopsie : asphyxie par noyade
- Antécédent médico-chirurgical connu : éthylisme chronique
- Taux de contamination bactérienne = 2000 UFC/mL
- Bactéries identifiées : *Enterobacter agglomerans* (10 UFC/mL), *Streptococcus* sp. (10 UFC/mL), *Enterococcus faecium* (0,2 UFC/mL), *Clostridium perfringens* (0,2 UFC/mL), *Lactobacillus curvatus* (0,2 UFC/mL).

Corps n°8
- DPM-p : 69 heures (+/- 2 heures)
- Séjour en chambre froide avant prélèvement : oui, 56 heures avant le prélèvement
- Sexe : Féminin
- Poids : 69 kg
- Taille : 156 cm
- Age de décès : 87 ans
- Circonstances de découverte : corps retrouvé à domicile, dans une flaqué de sang
- Cause de la mort après autopsie : hémorragie digestive par ulcère gastrique
- Antécédents médico-chirurgicaux connus : syndrome dépressif traité, hypertension artérielle, dyslipidémie, diabète de type 2
- Taux de contamination bactérienne = 30 UFC/mL
- Bactérie identifiée : *Proteus mirabilis* (30 UFC/mL)

6.2 Identification bactérienne

Les espèces bactériennes identifiées ainsi que leurs habitats normaux sont reportés dans le tableau 1 pour chaque corps, avec son DPM-p.

La quantité de bactéries en UFC/mL en fonction du DPM-p est représentée par un histogramme sur la figure 4. Le nombre d’espèces différentes en fonction du DPM-p est représenté par un histogramme sur la figure 5.
<table>
<thead>
<tr>
<th>Corps (DPM-p)</th>
<th>Genres et espèces bactériennes identifiés (UFC/mL)</th>
<th>Habitat normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>n°1 (8h)</td>
<td>Propionibacterium acnes (1500)</td>
<td>Microbiote cutané</td>
</tr>
<tr>
<td>n°2 (24h)</td>
<td><0,2 UFC/mL</td>
<td></td>
</tr>
<tr>
<td>n°3 (28,5h)</td>
<td>Staphylococcus sp. (10) Escherichia coli (10)</td>
<td>Microbiote cutané</td>
</tr>
<tr>
<td></td>
<td>Bifidobacterium longum (10)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Streptococcus anginosus (1)</td>
<td>Microbiote buccal</td>
</tr>
<tr>
<td></td>
<td>Bacteroides vulgatus (0,2)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td>n°4 (27h)</td>
<td>Streptococcus oralis (10)</td>
<td>Microbiote buccal</td>
</tr>
<tr>
<td></td>
<td>Enterobacter agglomerans (10)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli (10)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Klebsiella pneumoniae (10)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Clostridium perfringens (10)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Clostridium sordellii (1)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Enterococcus sp. (0,2)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Veillonella dispar (0,2)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Bacteroides thetaiotaomicron (1)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Bacteroides fragilis (0,2)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Bacteroides ovatus (0,2)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td>n°5 (48,5h)</td>
<td>Clostridium haemolyticum (1)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td>n°6 (17,5h)</td>
<td><0,2 UFC/mL</td>
<td></td>
</tr>
<tr>
<td>n°7 (63,5h)</td>
<td>Enterobacter agglomerans (10)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Streptococcus sp. (10)</td>
<td>Microbiote buccal</td>
</tr>
<tr>
<td></td>
<td>Enterococcus faecium (0,2)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Clostridium perfringens (0,2)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td></td>
<td>Lactobacillus curvatus (0,2)</td>
<td>Microbiote intestinal</td>
</tr>
<tr>
<td>n°8 (69h)</td>
<td>Proteus mirabilis (30)</td>
<td>Microbiote intestinal</td>
</tr>
</tbody>
</table>

Tableau 1 : Espèces, DPM-p et habitat normal des bactéries identifiées
Figure 4 : Quantité de bactéries en fonction du DPM-p avec notification du temps de réfrigération

Figure 5 : Nombre d'espèces bactériennes en fonction du DPM-p avec notification du temps de réfrigération
6.3 Observations au microscope

Les photos 1 à 5 sont tirées des observations directes au microscope optique, grossissement x 1000, des lames issues de nos prélèvements après coloration de Gram. Ces photos permettent d’apprécier visuellement les aspects qualitatifs et quantitatifs des prélèvements, ainsi que les spécificités morphologiques de certains germes. Chaque photo est identifiée et synthétiquement décrite.

Photo 1 : Corps n°3, après culture en flacon, avant isolement. Bactéries variées, denses, polymorphes, comprenant des cocci et des bacilles, à Gram positif et négatif, avec une prédominance de bacilles à Gram positif.
Photo 2 : Corps n°3, après culture en tube, avant isolement.

Bactéries variées, polymorphes. Présence de bacilles en chaînette. Bacille Gram positif trapu d'allure évocatrice d'un Clostridium perfringens.
Photo 3 : Corps n°4, après culture en flacon, avant isolement.

Bacilles sporulés à Gram positif. La forme ronde décolorée présente au centre de certains des bacilles (au milieu et à droite dans le champ) est une spore, très évocatrice du genre *Clostridium*.
Photo 4 : Corps n°5, après culture en flacon, avant isolement.

Bacilles à Gram positif ou à Gram variable. Une seule forme est ici observée, avec des bacilles longs et fins, parfois en chaînettes.
Photo 5 : Corps n°7, après isolement.

Bacilles à Gram positif trapus, évocateurs de Clostridium. Deux bacilles sur ce champ présentent une décoloration, dont un présentant une spore en formation.
7. Discussion

Une prolifération bactérienne sanguine post-mortem précoce d'origine digestive, concordante avec notre hypothèse initiale de TB lors de l'agonie, a été détectée. Nous avons discuté les résultats, limites et champs d'application de cette étude préliminaire, dans l'optique de définir les modalités d'une étude future.

7.1 Qualité et quantité de bactéries retrouvées

a. Mises en évidences

Six prélèvements sur huit ont révélé une prolifération bactérienne, avec vingt-quatre espèces différentes identifiées. Dix-neuf espèces isolées ont pour habitat normal le tube digestif. Trois espèces proviennent communément de la cavité buccale (*Streptococcus*), une espèce (*Staphylococcus*) est prédominante au niveau cutané.

Néanmoins, comme l'illustre le tableau 2 issu d'une étude du microbiote intestinal et buccal, les *Staphylococcus* et *Streptococcus* peuvent aussi provenir du tube digestif, où ces deux genres peuvent être sous-dominants.

Propionibacterium acnes du corps n°1 est reconnu pour être un contaminant cutané fréquemment retrouvé dans les prélèvements bactériologiques et à ce titre, ne représente pas un résultat significatif dans notre étude (65).

Nous avons donc détecté une contamination bactérienne sanguine *post-mortem*, de provenance digestive, sur des prélèvements qui étaient faits à distance du cadre colique (sous-claviers).

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Oropharynx</th>
<th>Stomach</th>
<th>Jejunum</th>
<th>Ileum</th>
<th>Colon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Count</td>
<td>$10^6 - 10^{10}$</td>
<td>$0 - 10^4$</td>
<td>$0 - 10^5$</td>
<td>$10^4 - 10^6$</td>
<td>$10^{10} - 10^{12}$</td>
</tr>
<tr>
<td>Aerobic microorganisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus</td>
<td>$10^6 - 10^3$</td>
<td>$0 - 10^3$</td>
<td>$0 - 10^4$</td>
<td>$10^2 - 10^4$</td>
<td>$10^3 - 10^5$</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>rare</td>
<td>rare</td>
<td>$0 - 10^3$</td>
<td>$10^2 - 10^4$</td>
<td>$10^5 - 10^{10}$</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>$0 - 10^2$</td>
<td>$0 - 10^2$</td>
<td>$0 - 10^3$</td>
<td>$10^2 - 10^5$</td>
<td>$10^4 - 10^6$</td>
</tr>
<tr>
<td>Enterobacteria</td>
<td>rare</td>
<td>$0 - 10^2$</td>
<td>$0 - 10^3$</td>
<td>$10^2 - 10^7$</td>
<td>$10^4 - 10^{10}$</td>
</tr>
<tr>
<td>Yeasts</td>
<td>$0 - 10^3$</td>
<td>$0 - 10^2$</td>
<td>$0 - 10^2$</td>
<td>$10^2 - 10^4$</td>
<td>$10^2 - 10^5$</td>
</tr>
<tr>
<td>Anaerobic microorganisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptostreptococcus</td>
<td>$10^4 - 10^6$</td>
<td>$0 - 10^3$</td>
<td>$0 - 10^3$</td>
<td>$10^2 - 10^6$</td>
<td>$10^{10} - 10^{12}$</td>
</tr>
<tr>
<td>Bifidobacterium</td>
<td>$0 - 10^2$</td>
<td>$0 - 10^2$</td>
<td>$0 - 10^4$</td>
<td>$10^3 - 10^9$</td>
<td>$10^8 - 10^{11}$</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>$0 - 10^3$</td>
<td>$0 - 10^3$</td>
<td>$0 - 10^4$</td>
<td>$10^2 - 10^5$</td>
<td>$10^6 - 10^8$</td>
</tr>
<tr>
<td>Clostridium</td>
<td>rare</td>
<td>rare</td>
<td>rare</td>
<td>$10^2 - 10^4$</td>
<td>$10^6 - 10^9$</td>
</tr>
<tr>
<td>Eubacterium</td>
<td>$10^2 - 10^3$</td>
<td>rare</td>
<td>rare</td>
<td>rare</td>
<td>$10^9 - 10^{12}$</td>
</tr>
<tr>
<td>Veillonella</td>
<td>$10^3 - 10^3$</td>
<td>$0 - 10^2$</td>
<td>$0 - 10^3$</td>
<td>$10^2 - 10^4$</td>
<td>$10^3 - 10^6$</td>
</tr>
<tr>
<td>Fusobacterium</td>
<td>$10^4 - 10^3$</td>
<td>$0 - 10^2$</td>
<td>$0 - 10^3$</td>
<td>$10^3 - 10^4$</td>
<td>$10^6 - 10^8$</td>
</tr>
<tr>
<td>Bacteroides fragilis</td>
<td>rare</td>
<td>rare</td>
<td>$0 - 10^3$</td>
<td>$10^3 - 10^7$</td>
<td>$10^{10} - 10^{12}$</td>
</tr>
<tr>
<td>Prevotella</td>
<td>$10^6 - 10^3$</td>
<td>$0 - 10^2$</td>
<td>$10^2 - 10^4$</td>
<td>$10^3 - 10^4$</td>
<td>$10^4 - 10^5$</td>
</tr>
</tbody>
</table>

Tableau 2 : Composition du microbiote de l’oro-pharynx et du tube digestif (30)

Dans notre étude actuelle, les trois taux de contamination bactérienne les plus importants observés (corps n°3, n°4 et n°7) ont pour facteur commun une mort au décours d'un syndrome asphyxique, avec deux cas de noyade et un cas de pendaison. Cette asphyxie implique que le décès ne survienne pas instantanément, avec une période d'agonie prolongée. Les différents organes, dont le tube digestif, subissent donc une hypoxie prolongée, avant de présenter des lésions tissulaires irréversibles après la mort. L'hypoxie tissulaire provoque une altération de la muqueuse intestinale et une atteinte des défenses immunitaires, qui sont des facteurs favorisants avérés de TB. Ce mécanisme rapporté dans la littérature serait également favorisé lors des manœuvres de réanimations qui maintiennent artificiellement une circulation sanguine (68).

Les corps n°3 et n°4 avaient un DPM-p de 27h et 28h, dont respectivement 24 et 23h de réfrigération. Il s'agissait des deux cas les plus profus de notre étude, la contamination bactérienne était précoce et variée. Ces observations impliquent que la prolifération bactérienne ait débuté plus tôt et que plusieurs espèces bactériennes aient traversé le tube digestif.

Par conséquent, nos constatations renforcent notre hypothèse initiale de l'existence d'une TB débutant pendant la phase d'agonie.

b. Limites

Nous avons observé une tendance à l'augmentation de la contamination bactérienne avec l'augmentation du DPM-p lors des confrontations qualitative et quantitative. Certains facteurs confondants doivent être discutés dans ce contexte :
- corps n°1 : la culture ne permettait d'identifier qu'une seule espèce, *Propionibacterium acnes*, contaminant cutané. Au regard de notre problématique, l'isolement unique de ce cas est l'équivalent d'une absence d'isolement. Cependant, la cause du décès retenue après autopsie était celle d'un syndrome asphyxique par inhalation de liquide fécaloïde provenant d'une occlusion intestinale. La présence dans ce cas d'une agonie prolongée et d'une occlusion intestinale impliquent notamment une altération de la muqueuse digestive et donc une TB. Néanmoins, cela n'a pas été observé pour ce cas. Pour expliquer cette absence de prolifération bactérienne, il est important de noter que les renseignements cliniques et thérapeutiques *ante-mortem* n'étaient pas exhaustifs. De plus, nous sommes dans ce cas en présence du DPM-p le plus court de notre étude.

- corps n°5 : nous retrouvons dans ce prélèvement un *Clostridium*, bactérie de provenance digestive, ce qui conforte l'hypothèse d'une TB. La présence dans ce cas d'une antibiothérapie à large spectre pendant un mois signifie qu'une altération majeure du microbiote intestinal s'était constituée, avec une destruction de nombreux micro-organismes. Cependant, les espèces du genre *Clostridium* peuvent produire des spores. Les spores sont des cellules spécialisées que certaines espèces de bactéries peuvent former, leur octroyant une résistance accrue aux environnements défavorables, y compris une résistance aux antibiotiques (69). Ceci explique la présence isolée d'une bactérie dans ce cas.

- corps n°8 : la seule espèce isolée dans ce cas (*Proteus mirabilis*) est une bactérie commensale du tube digestif, ce qui est compatible avec une hypothèse de TB. La cause de la mort retenue pour ce cas était une hémorragie digestive consécutive à un ulcère gastrique. La perte de sang massive intériorisée (et les facteurs inflammatoires qui y sont associés) dans le tube digestif implique une
modification majeure difficilement évaluable du microbiote intestinal et des mécanismes de barrières physiques et immunologiques du tube digestif. Ces éléments pourraient expliquer l'absence d'une multiplicité d'espèces dans le prélèvement.

7.2 Influence du refroidissement sur la sélection des bactéries

Le refroidissement corporel sélectionne certaines bactéries par rapport à d'autres. En effet, la prolifération bactérienne d'une espèce donnée dépend de la température et chaque espèce aura une sensibilité différente à la température.

Avant la mort, en dehors de circonstances particulières détaillées précédemment, le réservoir de la flore intestinale est important et les bactéries prédominantes sont les *Bacteroides* et les *Bifidobacterium*. Ces genres étaient observés pour les prélèvements des corps n°3, n°4 et n°7, alors qu'ils n'étaient pas mis en évidence dans l'étude précédente de notre laboratoire (67). Les DPM-p plus courts de notre étude actuelle permettent l'isolement de telles espèces. A plus long terme, donc à plus basse température, leur développement serait en effet freiné et ces espèces pourraient ne plus être détectables.

La baisse de la température sélectionne ensuite les bactéries capables de se développer à plus basse température. La figure 6 représente les courbes de prolifération d'*Escherichia coli* ensemencée en bouillon à de multiples températures (70). La figure 7 représente les courbes de prolifération de *Clostridium perfringens* en fonction de la température pour différentes viandes (volaille, bœuf, porc) (71). La prolifération bactérienne continue donc pour ces espèces, même à des températures comprises entre +20°C et +15°C.
Figure 6 : Taux de prolifération bactérien d’*E. coli* en fonction de la température (70)

Figure 7 : Taux de prolifération bactérien de *C. perfringens* en fonction de la température (71)

À +4°C, le processus de multiplication bactérienne est pratiquement stoppé, comme l’illustre la figure 8 issue d’une étude non publiée de notre laboratoire. Un
bouillon avec 10^6 UFC/mL d'*Escherichia coli* avait été ensemencé dans 2 tubes, l'un à $+4^\circ C$ et l'autre à $+37^\circ C$, puis les colonies avaient été prélevées et décomptées toutes les heures. La croissance bactérienne démarrait rapidement à $+37^\circ C$ (augmentation de 2.5 log UFC/mL en 4h à $37^\circ C$). À $+4^\circ C$, il n'y avait aucune prolifération bactérienne.

![Courbes de croissance E coli 10386](image)

Figure 8 : Taux de prolifération bactérien d'*E. coli* en fonction du temps, à $+4^\circ C$ et $+37^\circ C$

7.3 Influence de la réfrigération sur la température corporelle

La pratique actuelle de conservation des cadavres utilise une réfrigération qui permet d'accélérer le refroidissement corporel. Les corps de notre étude étaient stockés à $+4^\circ C$, néanmoins leurs températures internes n'atteignaient pas cette valeur instantanément.
Comme nous l’avons explicité précédemment, une sélection bactérienne a lieu en fonction de cette variation thermique. Afin d’interpréter nos résultats en termes de cinétique, la question se posait de "corriger" le DPM-p en fonction de la durée de réfrigération, par exemple en la soustrayant du DPM-p. Pour estimer le temps nécessaire pour que les corps atteignent une température centrale de +4°C, deux périodes devaient être dissociées : le délai entre la mort et la réfrigération, puis celui entre la réfrigération et l’atteinte d’une température de +4°C.

a. Le délai entre la mort et la mise en réfrigération

Avant d’arriver à l’Institut Médico-Légal et d’être mis en réfrigération, le corps est sous la responsabilité de plusieurs acteurs successifs à partir de sa découverte : services de police ou gendarmerie, pompes funèbres... Nous avons voulu apprécier la décroissance thermique de chaque corps pendant cette période.

Cette décroissance a été estimée en utilisant la modélisation bi-exponentielle, proposée par Henssge (11) :

\[
T_{\text{corps}} = T_{\text{amb}} + (37.2 - T_{\text{amb}}) \times (1.25 \times \exp(-k \times t) - 0.25 \times \exp(-5k \times t))
\]

\[
k = 1.2815/M^{0.625-0.0284}
\]

Avec :

- \(T_{\text{corps}}\) = température du corps en °C
- \(T_{\text{amb}}\) = température ambiante en °C
- \(t\) = DPM en heures (ici = délai entre la mort et la mise en réfrigération)
- \(M\) = masse du corps en kg
Cette modélisation mathématique est initialement conçue pour évaluer le DPM en fonction de la température corporelle, de la température ambiante et du poids du corps. Nous avons utilisé cette modélisation pour déterminer la température du corps avant mise en réfrigération, puisque nous connaissions les autres paramètres. La température ambiante initiale était estimée en fonction des circonstances de découverte du corps et des données climatiques locales.

Par exemple, pour le corps n°2, le cadavre était retrouvé dans un bâtiment fermé. Dans ces circonstances, il est communément admis que la température ambiante est comprise entre +18°C et +21°C. Nous l'avons ici estimée à +19°C compte tenu de la règlementation en vigueur dans ce type d'habitation (72). La température corporelle avant mise en réfrigération était alors estimée à +34,5°C selon la modélisation.

b. Le délai entre la mise en réfrigération et l'atteinte d'une température de +4°C

Une modélisation graphique de la décroissance thermique pendant la réfrigération par la modélisation de Henssge selon le même principe était effectuée. La température corporelle initiale habituellement fixée à +37,2°C était modifiée selon l'estimation précédemment effectuée. Par exemple, pour le corps n°2, la modélisation était définie par la formule suivante :

\[
T_{\text{corps}} = T_{\text{amb}} + (34.5 - T_{\text{amb}}) \times (1.25 \times \exp(-k \times t) - 0.25 \times \exp(-5 \times k \times t))
\]

\[k = 1.2815/M^{0.625} - 0.0284\]

Avec : \[T_{\text{corps}} = \text{température du corps en °C}\]
\(\text{Tamb} = \text{température de réfrigération en °C (ici = +4°C)} \)

\(t = \text{temps de réfrigération en heures (ici = 18 heures)} \)

\(M = \text{poids du corps en kg (ici = 81kg)} \)

La courbe d’estimation de la décroissance de la température corporelle pour le corps n°2 est représentée sur la figure 9. Nous constations que le temps nécessaire à atteindre +4°C était plus long que la durée de réfrigération. Ceci était également observé pour les autres prélèvements, sauf pour les corps n°7 et n°8 où la fin de la réfrigération était voisine d’une estimation de température corporelle de +4°C.

Ces estimations sont compatibles avec la décroissance corporelle thermique humaine observée dans des conditions de température contrôlée pour des indices de masses corporelles comparables (12). Une illustration comparative de ces décroissances thermiques est présentée sur la figure 10.

Figure 9 : Modélisation de la décroissance thermique du corps n°2 pendant sa réfrigération
Figure 10 : Evolution de la température corporelle en fonction du temps pour 3 cas (No.9 : corps à +2°C, IMC = 19,5 ; No. 15 : corps à +3,5°C, IMC = 34,1 ; No. 18 : corps à +5°C, IMC = 26,5) (12)

Il est donc impossible actuellement d'avoir une correction précise et scientifiquement appuyée du DPM-p, par rapport à la prolifération bactérienne. Puisque notre étude concerne des DPM courts, le fait de ne pas soustraire la durée de réfrigération permettait d’être plus représentatif de l'évolution de la prolifération bactérienne. Le choix a donc été fait initialement de ne pas corriger le DPM-p en fonction de la durée de réfrigération.

Afin de mieux interpréter ces données, notre protocole pourrait bénéficier d’une prise de température rectale effectuée systématiquement lors du prélèvement, même après réfrigération.
7.4 Evaluation des critères d’inclusion et d’exclusion

a. Critères d’inclusion

Le choix de n’intégrer que les corps pour lesquels une autopsie était demandée par la justice permettait de connaître avec certitude les causes de la mort. Cette démarche évite un biais d’interprétation qui pourrait exister pour un corps non autopsié qui présenterait des facteurs inconnus influant sur la TB.

Un âge au décès supérieur à deux ans : dans le cas d’un décès avant l’âge de deux ans, les causes de la mort sont des pathologies assez spécifiques à cette tranche d’âge. De plus, le microbiote intestinal est en cours de maturation, avec une forte variabilité inter-individuelle dépendant de l’environnement des sujets (73). Ces éléments auraient pu constituer des biais et parasiter l’interprétation des phénomènes que nous cherchions à mettre en évidence. Pour ces raisons, seuls les sujets âgés de plus de deux ans ont donc été inclus pour ce travail. L’étude des sujets âgés de moins de deux ans au décès nécessiterait une approche à part entière.

Devant le nombre limité de cas inclus lors des trois premiers mois de notre recueil de données, une réévaluation des critères d’inclusion a été faite. Ceci a conduit à un élargissement du DPM, passant de 24 à 72 heures et à une modification de la marge de précision, passant de une à deux heures. Après une observation des cas inclus et exclus sur les trois premiers mois, il est apparu que la connaissance de l’heure du décès avec précision était le facteur restrictif majeur de réalisation des prélèvements. Cela expliquait principalement le faible nombre de cas prélevés. C’est à ce titre que la marge d’erreur a été élargie. Cependant, pour conserver une évaluation de la cinétique bactérienne, cette marge de manœuvre ne pouvait pas
aller, selon nous et arbitrairement, au-delà de deux heures. Surtout, cet élargissement du DPM a permis de mettre évidence une prolifération bactérienne importante (notamment dans les corps n°3, n°4 et n°7), en adéquation avec une TB précoce.

b. Critères d'exclusion

Afin d'éviter une contamination exogène, source de faux positifs, les cas de perforation de la paroi digestive connue ou suspectée ainsi que la présence de plaies profondes souillées par de la terre, ont été exclus.

Les décès d'origine infectieuse ou dans un contexte fébrile connu étaient exclus. Les raisons de ce choix étaient d'une part la présence probable de bactéries dans la circulation sanguine en *ante-mortem* et d'autre part l'altération du microbiote et des défenses immunitaires *ante-mortem* induites dans ces situations.

Dans le cas d'un décès dans un incendie, la température ambiante potentiellement élevée pourrait favoriser la prolifération bactérienne. À l'inverse, une température trop élevée serait fatale pour les bactéries. Ces facteurs auraient rendu les résultats interprétables et cela a motivé l'exclusion de ces cas.

En suivant strictement nos critères, le corps n°5 devrait être exclu en raison de la présence d'une antibiothérapie avant la mort, mais dans le cadre de ce travail préliminaire, nous avons trouvé intéressant de discuter la présence d'un *Clostridium* dans ce prélèvement (cf. supra).
7.5 Précautions de réalisation du prélèvement

Une antisepsie avec utilisation de matériel stérile était réalisée en quatre temps afin d’éviter une contamination des prélèvements. Ce type de procédé était choisi en raison des recommandations récurrentes pour la réalisation d’hémocultures (74,75). Les bouchons des tubes étaient également désinfectés pour les mêmes motifs. Le Dakin® était utilisé comme antiseptique à ces fins car c’est un dérivé halogéné chloré à large spectre d’action (y compris sur les spores), permettant d’être efficace sur les germes en salle d’autopsie.

Les prélèvements sanguins étaient réalisés dans la veine sous-clavière, en raison de la distance de ce vaisseau avec le cadre colique. Cette voie de prélèvement a été préférée à d’autres (fémorale, cardiaque, etc.) car une précédente étude de notre laboratoire montrait des taux précoces de contamination bactérienne post-mortem des tissus à proximité du tube digestif (67). Un prélèvement distant du tube digestif permettait ainsi d’éviter une contamination de proche en proche.

La réfrigération du prélèvement et l’examen bactériologique étaient effectués le plus précocement possible, de façon à favoriser la survie des bactéries et la sensibilité des explorations réalisées.

7.6 Améliorations du protocole bactériologique

Sur des DPM courts, les données bibliographiques sont inexistantes pour l’évaluation quantitative de la contamination bactérienne post-mortem. Une étude antérieure de notre laboratoire faisait supposer une contamination bactérienne sanguine à des taux d’environ 1000 à 2000 UFC/mL (67). C’est pourquoi le choix
initial d'une dilution à 10^{-1} avait été ainsi fait, avec l'ensemencement de 0,1 mL de sang sur les géloses Columbia au sang. Les résultats ont néanmoins atteint les taux maximum de quantification pour deux cas, les géloses ne pouvant dénombrer plus de 500 bactéries. Le repiquage de bactéries est difficile dans ces cas, avec un risque de sous évaluer le nombre d'espèces (qui se confondraient dans la masse). Pour ces raisons, le protocole expérimental devrait être amélioré sur ce point, en ajoutant des dilutions supplémentaires à 10^{-2} et 10^{-3}, afin d'être plus performant sur le dénombrement et l'isolement d'espèces.

Par ailleurs, le taux de contamination de chaque bactérie identifiée est faible car il ne repose que sur le repiquage d'une colonie sur une boîte de gélose ne pouvant en dénombrer plus de 500. L'amélioration proposée ci-dessus permettrait également de corriger ce biais.

Huit corps ont été inclus au total. De nombreuses souches ont été isolées malgré le faible nombre de cas, ce qui conforte notre hypothèse et justifie la continuité des explorations. Il est intéressant de noter que nos prélèvements ont eu lieu autour et pendant la période hivernale. Il peut être supposé que les taux de contamination bactérienne soient encore plus importants en été, lorsque les températures ambiantes sont plus élevées. Un nombre de prélèvements plus important aurait cependant permis une meilleure interprétation des résultats afin de valider nos hypothèses.

Actuellement, plusieurs études utilisant des techniques de biologie moléculaire recherchent l'ADN ou l'ARN bactérien afin d'identifier les bactéries. Dans ce type
d'étude, n'importe quel tissu peut être utilisé, sans devoir réaliser de culture bactériologique. Dans ces cas, un biais est présent de par la possibilité de mettre en évidence des fragments bactériens. Ces fragments pourraient provenir de bactéries détruites et ne seraient donc pas pertinents dans une évaluation du DPM. Nous avons cherché à identifier des bactéries vivantes, capables de proliférer. Ceci permet également de garder les souches en collection, afin de pouvoir ultérieurement approfondir les explorations sur une ou plusieurs espèces particulières. Par exemple, leur évolution en fonction de la température pourrait être étudiée (Cf. supra avec *E. coli*), de façon à mieux apprécier la sélection bactérienne par la température.

Nous avons choisi des méthodes phénotypiques et biochimiques utilisées couramment en routine (76), complétées par une spectrométrie de masse. La spectrométrie de masse est considérée comme le « gold standard » actuel pour l'identification bactérienne de nombreuses espèces. Mais l'identification avec ce processus repose sur des bases de données comparatives (cf. annexe n° 6). Or les bactéries « cibles » de notre étude ne sont pas fréquemment recherchées et sont susceptibles de manquer dans les bases de données. Cela pourrait constituer un biais dans les résultats obtenus. C'est pourquoi l'identification des bactéries anaérobies a été validée par spectrométrie de masse après orientation phénotypique préalable.

7.7 **Confrontation des résultats aux données de la littérature**

Certains auteurs ont tenté de corrêler le DPM à certains métabolites de décomposition du cerveau chez le mouton. Pour cela, ils ont utilisé la spectrométrie
par résonance magnétique afin de quantifier des métabolites volatils issus de la décomposition de têtes de moutons (77). Les têtes de moutons étaient placées à +4°C, +11°C, +19°C et +26°C. La concentration des métabolites était croissante en fonction du temps et ils observaient une proportionnalité entre le DPM vrai et le DPM estimé pour 8 métabolites, notamment en post-mortem précoce (figure 11). Ces métabolites comprenaient plusieurs produits du métabolisme anaérobie et de la protéolyse. Il s’agissait d’acétate, d’alanine, d’acide aspartique, de butyrate, d’acide gamma-aminobutyrique, de myo-inositol + glycine, d’acide succinique et de valine.

Figure 11 : DPM estimé selon certains métabolites de décomposition cérébrale de moutons, en fonction du DPM réel (77)

Les têtes étaient cependant séparées du corps (récupération après décapitation à l’abattoir). Le reste du corps étant absent, notamment le tube digestif, la décomposition n’était donc pas représentative des conditions réelles de décomposition. Les mêmes auteurs ont par la suite comparé la décomposition de la
tête isolée d’un mouton avec celle de la tête d’un mouton dont le corps était intact. Ils constataient que seuls certains métabolites étaient communs aux deux cas : triméthylamine, acétate, propionate et butyrate. Ceci leur permettait de conclure à l’influence prépondérante du microbiote intestinal sur la décomposition cérébrale (78).

Il pourrait être néanmoins intéressant d'améliorer notre protocole selon ces observations. Nous pourrions ainsi ajouter à nos analyses une détection de métabolites spécifiques d’une protéolyse en anaérobiose, par chromatographie en phase gazeuse, comme par exemple le butyrate.

7.8 Champs d’application

a. Les examens _post-mortem_ bactériologiques aux fins de détermination de la cause du décès

Leur positivité est souvent difficile à interpréter pour en tirer des conclusions judiciairement exploitables. En effet, les germes identifiés peuvent provenir d’une TB ou être issus d’une contamination lors du prélèvement, induisant un faux positif. De façon générale, une culture pure (une seule espèce isolée) a plus de valeur qu'un prélèvement pluri-microbien. Comme chez le vivant, ces examens sont à interpréter en fonction du site de prélèvement, de l’histoire clinique, de la nature de la bactérie isolée et d’une inflammation visible à l’examen microscopique (2,68,79). Nos résultats soulignent l’importance du respect des règles d’asepsie ainsi que d’un prélèvement le plus précoce possible afin de limiter l’impact de la contamination bactérienne, qu’elle soit endogène ou exogène. Les techniques modernes de biologie moléculaire comme la réaction en chaîne par polymérase (PCR) peuvent
avoir un intérêt complémentaire en cas de suspicion d'un agent pathogène particulier. Ceci est bien illustré par une publication récente où une identification de *Neisseria meningitidis* était réalisée par PCR à 10 jours de DPM, alors que le corps présentait des signes de décomposition avancée. Grâce au contexte clinique *ante-mortem* évocateur, cette identification permettait de retenir le diagnostic de méningite à méningocoques (80).

b. La prévention du risque biologique en salle d'autopsie

Notre étude a identifié plusieurs bactéries de façon précoce dans le sang de cadavres, alors qu'aucune pathologie infectieuse n'était présente avant la mort. Ceci renforce l'importance du respect des principes sanitaires, qui devraient être équivalents à ceux d'un bloc opératoire en termes de structure, d'équipements et de maintenance (81). Les différents agents pathogènes peuvent être transmis par voie respiratoire, digestive ou cutanée, avec un risque maximal en cas de piqûre. Les équipements de protection individuelle doivent donc être scrupuleusement portés, notamment une tenue professionnelle de base associée à une surblouse, un tablier plastique à usage unique, un article coiffant (charlotte, bonnet,…), un masque chirurgical, des lunettes de protection, des gants, des gants anti-coupure, des chaussures fermées dédiées et des sur-chaussures. Des bactéries comme *Clostridium perfringens*, à haut pouvoir pathogène (responsable de gangrènes gazeuses) et très résistantes (grâce à la production de spores) ont été mises en évidence. De tels agents pathogènes soulignent l'importance de mesures de prévention ciblées : particulièrement pour le suivi des procédures d'accident d'exposition au sang, avec notamment l'utilisation de bains de Dakin®, antiseptique
efficace sur les spores, mais aussi l'utilisation de désinfectants efficaces sur les spores, pour les sols, les surfaces et le matériel, comme l'eau de javel (81–83).

c. Les dosages toxicologiques post-mortem

Des dosages d'éthanol sont recherchés dans les cas où une alcoolisation est suspectée dans certaines circonstances de décès (par exemple, un accident de voiture). Les bactéries anaérobies sont capables de former de l'éthanol par fermentation alcoolique. Ce phénomène est connu et notre hypothèse de TB précoce doit être un argument supplémentaire à émettre des réserves quant à l'interprétation de taux d'éthanol post-mortem. La recherche récente est axée sur des métabolites de l'éthanol, tels que l'ethyl glucuronide, le phosphatidylethanol et des acides gras ethyl esters, qui permettent d'être plus sensible et spécifique (84).

L'acide gamma-hydroxybutyrique (GHB) est à considérer en pratique médico-légale car il peut être utilisé comme traceur dans le cadre de la consommation de drogues ou de soumission chimique. Bien que présent dans le corps dans d'infimes concentrations (nano-molaires), il est également produit naturellement lors de la décomposition du corps et par certaines bactéries (85,86). L'utilisation de tubes Ethylène Diamine Tétra-Acétique (EDTA) est de ce fait recommandée, afin de restreindre la prolifération bactérienne. Ces éléments doivent être pris en compte dans l'interprétation de dosages post-mortem de GHB (87).

d. Les complications infectieuses chez les patients recevant une allogreffe

Le risque infectieux est présent pour les patients recevant une allogreffe d'organes d'un donneur en état de mort encéphalique ou de tissus musculo-
squelettiques prélevés en post-mortem. En effet, plusieurs cas de complications infectieuses sont rapportés dans la littérature, alors que les donneurs étaient sains sur le plan infectieux (88). Différents auteurs décrivent notamment des taux d'infection à Clostridium sordellii de 8,1% sur 795 donneurs de tissus musculo-squelettiques (89), de colites à Clostridium difficile (90) pour 12,4% de cas sur 1331 donneurs d'organes solides, ou encore de rares infections à Clostridium perfringens après transplantation hépatique (91). Les recommandations de greffer le plus précocement possible (principalement dans le but de réduire le temps d'ischémie froide), dans des règles d'asepsie strictes, sont renforcées par nos constatations. Des précisions ultérieures sur la prolifération bactérienne post-mortem permettraient donc une meilleure prévention de ces risques.

e. L’approche des maladies infectieuses en paléopathologie

L’émergence des techniques de biologie moléculaire, avec le séquençage des génomes de bactéries, a permis une approche de certaines maladies chez les populations du passé. Ainsi, le génome de Yersinia pestis, espèce responsable de la peste noire, a été reconstitué à partir de restes de victimes dont la cause du décès était attribuée à la peste de façon certaine (92). Il est également possible de citer la gangrène gazeuse, pathologie redoutée lors de la Première Guerre Mondiale, dont Clostridium perfringens est l’agent responsable (93). Des spores de Clostridium ont même été retrouvés sur des documents issus d’une sépulture religieuse datant des XV et XVIèmes siècles (94). Les données qualitatives et quantitatives des bactéries du cadavre semblent cruciales à prendre en compte dans l’interprétation de tels cas.
Conclusion

Nous avons réalisé un travail original cherchant à quantifier, qualifier et apprécier la cinétique bactérienne dans les phénomènes cadavériques chez l'Homme. À notre connaissance, il n'existe pas d'étude antérieure dans la littérature ayant ces objectifs pour des DPM courts.

Cette étude a permis d'observer une contamination bactérienne sanguine post-mortem précoce et de provenance digestive. Les résultats qualitatifs (présence majoritaire de bactéries du tube digestif), quantitatifs (large variété de bactéries) et cinétiques (taux de contamination bactériens élevés précocement) sont en faveur de notre hypothèse d'une TB intestinale débutant dès la période d'agonie, en ante-mortem. Les mécanismes favorisants seraient les mêmes que ceux décrits chez le vivant. Les espèces bactériennes observées sont également en faveur d'une sélection bactérienne par la décroissance thermique et par les conditions d'anaérobie.

Nos résultats sont encourageants et concordent avec notre hypothèse initiale. Cependant, ce travail est préliminaire et ne permet pas de tirer de conclusion définitive. Les travaux antérieurs dans ce domaine sont peu nombreux et un recueil de cas plus important est nécessaire. Les éléments présentés doivent donc être développés.

Une meilleure connaissance de la prolifération bactérienne du cadavre permettrait une appréciation plus pertinente de la valeur des examens bactériologiques ou toxicologiques post-mortem, des approches infectieuses en
paléopathologie, du risque infectieux après transplantation d'organes prélevés sur donneur en état de mort encéphalique ou encore du risque biologique pour le personnel travaillant en salle d'autopsie.

En perspective, la détermination de la ou des bactéries ayant la meilleure reproductibilité dans l'évaluation du DPM rendrait possible la recherche de quelques métabolites ciblés. Ces métabolites pourraient être intégrés dans un faisceau d'arguments de l'évaluation du DPM précoce en pratique médico-légale.

Annexes
ETUDE - TRANSLOCATION BACTERIENNE POST-MORTEM
PRELEVEMENT SANGUIN – FICHE SUJET A REMPLIR

- Date et heure du prélèvement : …… / …… / …… à …….. h ……..
- Date et heure du décès : …… / …… / …… à …….. h ……..
- Température corporelle (voie rectale) lors du prélèvement : …….. ……°C
- Sexe du sujet : □ Féminin □ Masculin
- Age du sujet lors du décès : …….. ans
- Levée de corps effectuée ? : □ Oui □ Non
- Réfrigération avant prélèvement ? : □ Oui □ Non
 Si oui : Horaire de début - horaire de fin : …….. h …….. → …….. h ……..
 Température de la réfrigération : …….. °C
- Circonstances de découverte du corps :
 ……
 ……
- Antécédents médico-chirurgicaux
 ……
- Présence de critère(s) d’exclusion : □ Oui □ Non
 Si oui, lequel / lesquels :
 □ Incendie □ Plaie abdominale
 □ Contexte fébrile/infectieux □ Antibiothérapie connue
 □ Plaie souillée □ Autre, préciser : …………………………………..
- Cause de la mort après autopsie :
 ……
 ……
ANNEXE N°2

Composition des milieux utilisés

<table>
<thead>
<tr>
<th>Brain Heart cystéine BH (cœur cervelle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base cervelle cœur</td>
</tr>
<tr>
<td>Extrait de levure</td>
</tr>
<tr>
<td>Chlorhydrate de cystéine</td>
</tr>
<tr>
<td>pH 7,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wilkins-West liquide (WW liquide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptone pancréatique de caséine</td>
</tr>
<tr>
<td>Peptone de gélatine</td>
</tr>
<tr>
<td>Extrait de levure</td>
</tr>
<tr>
<td>Glucose</td>
</tr>
<tr>
<td>Chlorhydrate d'arginine</td>
</tr>
<tr>
<td>Pyruvate de sodium</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>Chlorhydrate de cystéine</td>
</tr>
<tr>
<td>Tween 80</td>
</tr>
<tr>
<td>Hémine</td>
</tr>
<tr>
<td>Vitamine K3</td>
</tr>
<tr>
<td>Indicator d'Andrade</td>
</tr>
<tr>
<td>pH 7,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gélose Columbia cystéine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Columbia</td>
</tr>
<tr>
<td>Glucose</td>
</tr>
<tr>
<td>Chlorhydrate de cystéine</td>
</tr>
<tr>
<td>Agar</td>
</tr>
<tr>
<td>pH 6,8</td>
</tr>
</tbody>
</table>

Pour la gélose CS ajouter 5% de sang de cheval

<table>
<thead>
<tr>
<th>Wilkins-West profond (ww profond)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptone pancréatique de caséine</td>
</tr>
<tr>
<td>Peptone de gélatine</td>
</tr>
<tr>
<td>Extrait de levure</td>
</tr>
<tr>
<td>Glucose</td>
</tr>
<tr>
<td>Chlorhydrate d'arginine</td>
</tr>
<tr>
<td>Pyruvate de sodium</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
</tr>
<tr>
<td>Chlorhydrate de cystéine</td>
</tr>
<tr>
<td>Agar</td>
</tr>
<tr>
<td>Tween 80</td>
</tr>
<tr>
<td>Hémine</td>
</tr>
<tr>
<td>Vitamine K3</td>
</tr>
<tr>
<td>pH 7,0</td>
</tr>
</tbody>
</table>
ANNEXE N°3

Coloration de Gram

Il s’agit de la coloration de référence en bactériologie. Sur un frottis fixé à la chaleur, les étapes suivantes sont effectuées (figure 12) :

- la lame est recouverte de violet de gentiane pendant une minute
- le violet de gentiane est rejeté
- la lame est recouverte de lugol pendant une minute
- le lugol est rejeté
- la lame est décolorée à l’alcool
- la décoloration est stoppée par un lavage à l’eau
- la lame est recouverte de fuchsine diluée
- un nouveau lavage à l’eau est effectué
- la lame est séchée entre 2 feuilles de papier filtre
- la lame est examinée au microscope à l’immersion

Les bactéries à Gram positif apparaissent colorées en violet et les bactéries à Gram négatif en rose.

Figure 12 : Principes de la coloration de Gram, à gauche une bactérie à Gram positif et à droite une bactérie à Gram négatif :

A : bactéries fixées non colorées
B : bactéries colorées par le violet de gentiane
C : seules les bactéries à Gram positif restent colorées en violet après l’étape de décoloration
D : les bactéries décolorées à l’étape précédente sont recolorées en rose par la fuchsine

Référence bibliographique :
ANNEXE N°4

Milieu de Kligler

Le milieu de Kligler est un milieu de culture contenant notamment du lactose et du glucose. Sa couleur est initialement rouge de par son indicateur de pH. La fermentation du glucose ou du lactose se traduit par une acidification qui fait virer au jaune l'indicateur de couleur. Le milieu se dépose dans un tube, une colonie isolée est ensemencée en tenant le tube incliné de manière à obtenir un culot et une pente. Dans le cadre de notre protocole, si la bactérie utilise le glucose, le milieu situé dans le culot devient jaune, il s'agit alors d'une entérobactérie et l'identification bactérienne se fera grâce à une galerie API 20 E. Si la bactérie utilise également le lactose, le milieu devient entièrement jaune, la probabilité d'être en présence d'*Escherichia coli* étant élevée, un test Citrate/Indole est effectué, puis une galerie API 20 E est utilisée s'il ne s'agit pas d'*E. coli*. Si le glucose n'est pas fermenté, le milieu reste rouge, il ne s'agit donc pas d'une entérobactérie et la galerie API 20 NE est alors utilisée.

Test à la catalase

Ce test consiste à mettre en contact la colonie étudiée avec de l'eau oxygénée. La présence de bulles (effervescence due à un dégagement de dioxygène révélant la présence d'une catalase) est considérée comme un test positif (catalase +), son absence comme un test négatif (catalase -).

Un bacille à Gram positif catalase - : bactérie du genre *Lactobacillus*.
Un bacille à Gram positif catalase + : bactérie du genre *Corynebacterium*.
Un coque à Gram positif catalase + : bactérie du genre *Staphylococcus*.
Un coque à Gram positif catalase - : bactérie du genre *Enterococcus* ou *Streptococcus*.
ANNEXE N°5

Galeries API®
Une galerie API® est un ensemble de micro-tests qui permettent de déterminer plusieurs caractères biochimiques d’une souche à identifier. Chaque test contient un substrat différent où la réaction du micro-organisme sera analysée. Les tests sont regroupés par 3, chacun étant associé à une valeur de 1, 2 ou 4. Une valeur est attribuée pour chacun des groupes, correspondant à la somme des valeurs de chaque test (figure 13). La lecture se fait grâce à un code numérique pouvant être traduit avec un dictionnaire.

Figure 13 : Exemple d’identification de Klebsiella pneumoniae par galerie API 20E. Le code numérique est ici 5215773

Référence iconographique :
Département de biologie - Université de Sherbrooke. Biomédias.
http://pages.usherbrooke.ca/biomedias/
ANNEXE N°6
Spectrométrie de masse de type MALDI-TOF

La spectrométrie de masse est une technique physique qui permet d'étudier le déplacement de molécules chargées en ions dans des champs électromagnétiques. Ce procédé peut permettre d'identifier des micro-organismes grâce à l'analyse de leur contenu en protéines.

Séquence d'identification (figure 14) : une colonie issue d'une gélose est tout d'abord ionisée grâce à une matrice, généralement un dérivé de l'acide cinnamique, avec laquelle elle est co-cristallisée sur une surface métallique. La source d'énergie est ici un faisceau laser pulsé émettant dans le domaine des ultraviolets. Les ions ainsi générés sont séparés en fonction de leur temps de vol, c'est-à-dire le temps qu'ils mettent à traverser le tube de vol. Ce temps dépend du rapport masse/charge des ions générés (les ions de rapport masse/charge le plus petit arriveront en premier).

Pour chaque groupe d'ions de même rapport masse/charge, un signal (pic) est enregistré, l'ensemble des pics constitue ainsi un spectre de masse. Les spectres générés sont ensuite comparés à des spectres de référence présents dans une base de données (initialement issue de collections internationales). La concordance d'un spectre obtenu à partir d'une bactérie étudiée avec ceux des souches de référence se traduit par un score traduisant le degré de confiance accordable à l'identification (tableau 3, figure 15).

Figure 14 : Principe de la spectrométrie de masse de type MALDI-TOF
Tableau 3 : Score de concordance des spectres obtenus à partir d'une bactérie d'intérêt avec ceux de la base de données Biotyper

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Symbole</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.300 – 3.000</td>
<td>Forte probabilité d'identification à l'espèce</td>
<td>+++</td>
</tr>
<tr>
<td>2.000 – 2.299</td>
<td>Identification du genre sécurisée, identification à l'espèce probable</td>
<td>++</td>
</tr>
<tr>
<td>1.700 – 1.999</td>
<td>Identification au genre probable</td>
<td>+</td>
</tr>
<tr>
<td>0.000 – 1.699</td>
<td>Degré de confiance insuffisant pour l'identification</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 15 : Exemple de résultat d'une identification - Les scores élevés et les espèces identiques proposées permettent d'identifier *C. perfringens* avec certitude

Références bibliographiques :
N. Blondiaux, O. Gaillot and R. J. Courcol. Identification bactérienne de routine par spectrométrie de masse MALDI-TOF au CHU de Lille : impact médical et économique, EuroReference 2011, No. 5, ER05-11M01
AUTEUR : Nom : MESLI Prénom : Vadim

Date de Soutenance : Mercredi 12 juin 2013

Thèse - Médecine - Lille 2013

Cadre de classement : DES de Médecine du travail

Mots-clés : Translocation bactérienne, Bactériologie, Thanatologie

Résumé :

Introduction : Les phénomènes de décomposition cadavérique sont relativement peu documentés dans la littérature concernant la place des enzymes humaines, des bactéries endogènes ou exogènes et des insectes. Cette étude préliminaire a pour objectif d'identifier les bactéries impliquées dans la décomposition du cadavre, de les quantifier et d'apprécier la cinétique de ce phénomène.

Matériel et Méthodes : Des prélèvements sanguins sous-claviers étaient effectués pour tout corps dont le délai post-mortem était connu et inférieur à 72 heures. Une identification bactérienne par méthodes phénotypiques et biochimiques était réalisée, complétée par une identification par spectrométrie de masse pour les bactéries anaérobies strictes.

Résultats : 8 corps étaient prélevés pour un délai post-mortem compris entre 8 et 69 heures. Sur 6 corps, 24 souches bactériennes étaient identifiées, toutes anaérobies strictes ou aéro-anaérobies facultatives, dont 19 couramment isolées du tube digestif. Dans 2 cas, aucune bactérie n'était isolée (< 0,2 UFC/mL). Les taux de contamination bactérienne atteignaient notre seuil maximal de quantification, soit 5000 UFC/mL, pour 2 corps.

Discussion et Conclusion : A distance du cadre colique, des bactéries protéolytiques productrices de gaz, de provenance digestive, ont été identifiées pour des délais post-mortem courts. Le milieu cadavérique sélectionne la prolifération bactérienne, surtout par la température. Le développement des germes est ensuite dépendant des conditions d'anaérobiose. Notre hypothèse est que la translocation bactérienne débute avant la mort, pendant la phase d'agonie, par des mécanismes identiques à ceux décrits chez le vivant. Un envahissement bactérien post-mortem viendrait également compléter ce mécanisme. Les taux d'envahissement bactérien les plus importants ont été retrouvés pour des morts présentant une asphyxie prolongée, ce qui est en adéquation avec notre hypothèse.

Composition du Jury :

Président : Monsieur le Professeur GOSSET

Assesseurs : Monsieur le Professeur FRIMAT
 Monsieur le Professeur HEDOUIN
 Madame le Professeur SOBASZEK
 Monsieur le Docteur DESSEIN
 Madame le Docteur NEUT