La simulation médicale comme moyen pédagogique : intérêt à un an.

Présentée et soutenue publiquement le 23 septembre 2015 à 16 heures au Pôle Formation

Par Charles QUEVA

JURY

Président :
 Monsieur le Professeur WIEL Eric
Assesseurs :
 Madame le Professeur JOURDAIN Mercé
 Monsieur le Docteur RENARD Jean-Marie
 Monsieur le Docteur NUNES Frédérico
 Monsieur le Docteur COFFIN Pierre
Co-Directeurs de Thèse :
 Monsieur le Docteur NUNES Frédérico
 Monsieur le Docteur COFFIN Pierre
Avertissement

La Faculté n'entend donner aucune approbation aux opinions émises dans les thèses : celles-ci sont propres à leurs auteurs.
Liste des abréviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Arrêt Cardio Circulatoire</td>
</tr>
<tr>
<td>ACRM</td>
<td>Anesthesia Crisis Resource Management</td>
</tr>
<tr>
<td>CA</td>
<td>Choc Anaphylactique</td>
</tr>
<tr>
<td>CA3</td>
<td>Choc Anaphylactique de grade 3</td>
</tr>
<tr>
<td>CFAR</td>
<td>Collège Français des Anesthésistes Réanimateurs</td>
</tr>
<tr>
<td>CHRU</td>
<td>Centre Hospitalier Régional Universitaire</td>
</tr>
<tr>
<td>CRM</td>
<td>Crew Resource Management</td>
</tr>
<tr>
<td>DES</td>
<td>Diplôme d’Étude Spécialisée</td>
</tr>
<tr>
<td>DESAR</td>
<td>Diplôme d’Étude Spécialisée en Anesthésie Réanimation</td>
</tr>
<tr>
<td>DESCMU</td>
<td>Diplôme d’Étude Spécialisée Complémentaire en Médecine d’Urgence</td>
</tr>
<tr>
<td>EMCRM</td>
<td>Emergency Medicine Crisis Resource Management</td>
</tr>
<tr>
<td>FV</td>
<td>Fibrillation Ventriculaire</td>
</tr>
<tr>
<td>HAS</td>
<td>Haute Autorité de Santé</td>
</tr>
<tr>
<td>HPS</td>
<td>Human Patient Simulator</td>
</tr>
<tr>
<td>IDE</td>
<td>Infirmier Diplômé d’État</td>
</tr>
<tr>
<td>METI</td>
<td>Medical Education Technologies Inc.</td>
</tr>
<tr>
<td>PRESAGE</td>
<td>Plateforme de Recherche et d’Enseignement par la Simulation pour l’apprentissage des Attitudes et des GEstes</td>
</tr>
<tr>
<td>SMUR</td>
<td>Service Mobile d’Urgence et de Réanimation</td>
</tr>
</tbody>
</table>
Table des matières

Résumé .. 12
Introduction .. 13
Matériel et Méthode .. 15
I. Type d’étude ... 15
II. Population de l’étude et critères d’inclusion ... 15
III. Formation théorique .. 16
IV. Constitution des groupes ... 16
V. Formations pratiques sur mannequin haute-fidélité 17
 A. Briefing .. 17
 B. Pré-briefing scénario ... 17
 C. Déroulement des exercices simulés .. 18
 D. Débriefing ... 18
VI. Évaluation des compétences à six semaines, six mois et un an 19
 A. Déroulement de la période d’évaluation .. 19
 B. Scénario choc anaphylactique de grade 3 (CA3) 19
 C. Scénario fibrillation ventriculaire réfractaire (FV) 21
 D. Grilles d’évaluation .. 22
VII. Le centre de simulation ... 23
VIII. Statistiques ... 27

Résultats .. 29
I. Population incluse ... 29
II. Évaluation du bénéfice pédagogique de la simulation 31
 A. Scénario FV .. 31
 B. Scénario CA3 .. 32
 C. Analyse par sous-groupes .. 33
III. Évolution des notes entre les trois temps .. 35
 A. Groupe ACC .. 35
 B. Groupe CA ... 36
 C. Analyse par sous-groupes .. 37
IV. Ressenti des participants ... 39

Discussion .. 40
Conclusion .. 48
Bibliographie .. 49
Annexes .. 54
Résumé

Contexte: La simulation médicale est devenue une méthode pédagogique incontournable pour tous les professionnels de santé. Elle est efficace en terme d’apprentissage et améliore les compétences. Cependant la plupart des études ne se sont concentrées que sur les bénéfices immédiats et la rétention des compétences à court terme.

Objectif principal: Étudier l’intérêt et l’apport pédagogique à court, moyen et long terme de la simulation médicale par rapport à une formation classique.

Méthodes: Tous les internes de 3 ième année du 3 ième cycle en anesthésie-réanimation et médecine d’urgence ont été convoqués. Tous ont bénéficié d’une formation théorique avec un rappel des dernières recommandations sur la prise en charge de l’arrêt cardiaque et du choc anaphylactique. Ils ont été randomisés en 2 groupes et ont reçu une formation pratique sur simulateur haute-fidélité à la prise en charge soit de l’arrêt cardiaque (groupe ACC), soit du choc anaphylactique (groupe CA). Chaque groupe a été évalué à 6 semaines (T0), 6 mois (T1) et 1 an (T2) sur deux scénarii : une fibrillation ventriculaire réfractaire (FV) noté sur 20 points et un choc anaphylactique de grade 3 (CA3) noté sur 30 points. Chaque groupe a servi de groupe témoin à l’autre pour la pathologie dans laquelle il n’a pas reçu de formation spécifique sur simulateur. Les résultats sont exprimés en moyenne avec leurs écarts-types avec « p » < 0,05.

Conclusion: Les participants formés sur simulateur ont des résultats significativement supérieurs à ceux non formés, aussi bien à 6 semaines, 6 mois et 1 an. Les compétences et connaissances acquises en simulation sont maintenues sur le long terme jusqu’à 1 an après une seule séance de formation.
Introduction

Depuis le premier mannequin d’accouchement de Mme Du Coudray au XVIIIème siècle sur lequel des générations de sages-femmes se sont formées, jusqu’au mannequin de haute-fidélité de dernière génération, la simulation dans le milieu médical a connu un essor considérable [1,2].

« Mieux former pour mieux soigner », c’est avec cet objectif que la simulation médicale est devenue depuis plusieurs années une méthode pédagogique incontournable pour tous les professionnels de santé, aussi bien pour les étudiants en médecine à partir du deuxième cycle que pour les internes et les médecins en exercice. Elle concerne aussi bien la formation initiale que le développement professionnel continu.

La simulation est maintenant reconnue comme un pan incontournable de l’enseignement basé sur les preuves (« evidence-based education »). Elle permet d’acquérir plus rapidement et sans risque pour le patient des connaissances, des habiletés techniques et gestuelles, et des compétences non techniques comme la gestion d’équipe, de crise et le leadership.

La simulation apparaît comme un outil d’amélioration de la qualité et de la sécurité des soins en offrant la possibilité de répéter à l’infini des situations courantes ou rares. Le but final étant d’améliorer les prises en charge, avec ce leitmotiv : « jamais la première fois sur le patient ».

La Médecine d’Urgence et l’Anesthésie Réanimation sont deux disciplines où règne le souci permanent de la sécurité des malades. Elles ont pu bénéficier très tôt de l’apport de la simulation médicale pour former leurs médecins. Deux pathologies communément gérées par ces spécialités sont particulièrement adaptées à la formation sur simulateur : le choc anaphylactique et l’arrêt cardiaque. La prise en charge de ces deux situations critiques fait à la fois appel au savoir (connaissance), au savoir-faire (pratique), et au savoir être (comportement), autant de compétences qu’il est indispensable de maîtriser.
Au sein de la Faculté de Médecine de Lille plusieurs études ces dernières années ont mis en avant l'intérêt pédagogique de la simulation dans la formation médicale des internes de médecine d’urgence et d’anesthésie réanimation [3, 4, 5].

La recherche en enseignement médical assisté par la simulation est une discipline récente. La simulation est efficace en terme d’apprentissage. Les compétences acquises sont transférables en pratique. Ceci constitue le message principal de cette recherche.

Cependant la plupart des études ne se sont concentrées que sur les bénéfices immédiats et la rétention des compétences à court terme, de trois à six mois pour les plus longues [6].

Une étude de 2010 de Gaba définit les priorités de recherche en éducation par simulation, ainsi que les lacunes principales qu’il est nécessaire de combler dans les années à venir.

L’une de ces priorités est d’étudier le maintien sur le long terme des compétences acquises en simulation [7].

L’objectif principal de cette étude est d’étudier l’intérêt et l’apport pédagogique sur le long terme de la simulation médicale par rapport à une formation classique, via un mannequin simulateur de patient haute-fidélité. Une population d’internes en anesthésiste-réanimation et médecine d’urgence a ainsi été suivie et évaluée à six semaines, six mois et un an sur leur prise en charge du choc anaphylactique et de l’arrêt cardiaque.

L’objectif secondaire est d’étudier l’évolution des notes au cours des différentes périodes d’évaluations.

Cette étude s’est également intéressée au ressenti des participants envers la simulation médicale comme nouvel outil pédagogique.
Matériel et Méthode

I. Type d’étude

Étude de cohorte longitudinale observationnelle et descriptive, prospective, monocentrique (centre PRESAGE du CHRU de Lille), randomisée, ouverte, avec groupe contrôle.

II. Population de l’étude et critères d’inclusion

Tous les internes inscrits à la faculté de médecine de Lille II à la rentrée de novembre 2013 en troisième année du D.E.S. d’anesthésie-réanimation ainsi que ceux inscrits en première année du Diplôme d’Étude Spécialisée Complémentaire de Médecine d’Urgence (DESCMU)(soit la 3ème année du 3ème cycle des études médicales).

Au total 46 étudiants étaient concernés, 24 en anesthésie-réanimation et 22 en médecine d’urgence.

Au début du mois de novembre 2013 la totalité des internes sus-cités a été contacté par courriel afin de leur expliquer la mise en place des séances de simulation. Si les étudiants étaient intéressés ils renvoyaient un mail avec leur consentement et leurs disponibilités.

Le recrutement a été réalisé sur la base du volontariat. Tous les candidats étaient libres d’accepter ou de refuser la participation aux différentes séances proposées, aussi bien pour la formation initiale que pour les séances d’évaluations qui ont suivi.

Au besoin, une attestation de présence pouvait être fournie à l’intention du responsable de l’interne pour le stage en cours.

A ce stade, tous les internes démarchés ont souhaité participer aux séances de simulation.
III. Formation théorique

La première phase de l’étude a été d’assurer la formation théorique de tous les participants.

Étaient considérés comme acquis tous les savoirs théoriques et pratiques nécessaires à la validation du deuxième cycle des études médicales.

Deux semaines avant les premières séances de simulation l’ensemble des internes a reçu par courrier électronique les dernières recommandations des sociétés savantes et conférences d’experts concernant la prise en charge de l’arrêt cardiaque [8] et du choc anaphylactique [9].

Tous les étudiants devaient ainsi mettre à jour leurs connaissances pour ces deux situations critiques sans savoir quel serait le thème de leur formation sur simulateur.

IV. Constitution des groupes

Par la suite les participants inclus dans l’étude ont été répartis par tirage au sort en deux groupes. Un groupe dénommé « ACC » pour Arrêt Cardio Circulatoire, qui a été spécifiquement formé sur simulateur à la prise en charge de cette pathologie. L’autre groupe dénommé « CA » pour Choc Anaphylactique qui a également été formé sur simulateur à la prise en charge de cette seule situation critique.

Ainsi chacun de ces groupes a servi de groupe témoin à l’autre pour la pathologie dans laquelle il n’a pas reçu de formation spécifique sur simulateur.
V. Formations pratiques sur mannequin haute-fidélité

A. Briefing

Les deux groupes ont été convoqués au centre de simulation à une date différente.

Le briefing d’introduction a eu pour but d’expliciter les objectifs pédagogiques de la séance de formation, ainsi que le rôle de chacun des participants.

Les internes ont pu se familiariser avec le simulateur, son environnement, et le matériel disponible.

Le déroulement de la séance de simulation à proprement dite se faisait sur un mode classique comprenant une phase initiale de pré-briefing, la mise en situation pratique, puis un débriefing. Chaque séance durait en moyenne trente minutes. L’encadrement était assuré par un médecin anesthésiste formateur en simulation et un médecin urgentiste.

Il a également été rappelé les règles de confidentialité, basées sur un accord oral tacite. Toutes les données colligées durant les sessions de simulations ne pourraient avoir aucune conséquence sur le cursus universitaire des étudiants. Aucun enregistrement vidéo n’a eu lieu.

B. Pré-briefing scénario

Cette première étape a eu pour but de préparer l’interne à la situation clinique à venir. Les différents points du scénario étaient détaillés, ainsi que les objectifs et toutes les informations nécessaires à sa réalisation.

Les membres du groupe ACC ont été formés par le biais de scénarii variés sur la thématique de l’arrêt cardiaque. Plusieurs étiologies (mort subite, électrocution, asphyxie, etc.) et types de tracés cardiaques (asystole, fibrillation ventriculaire, dissociation électromécanique, etc.) ont été traités, en insistant sur les algorithmes de prise en charge.
Les membres du groupe CA ont été formés par le biais de scénarii variés sur la thématique du choc anaphylactique. Plusieurs étiologies (allergie au latex, aux antibiotiques, curares, etc.) et degrés de gravité (du grade 1 au grade 4) ont été traités, en insistant sur les algorithmes de prise en charge.

C. Déroulement des exercices simulés

Tous les internes sont passés à de multiples reprises sur le mannequin simulateur de patient par binôme. Chacun participait de façon active au cours de deux scénarii : l'un d'eux jouant son propre rôle d'interne, le second celui d'un médecin sénior, puis vice versa. Ils étaient accompagnés d'un infirmier diplômé d'état et d'un facilitateur. Ce dernier pouvait endosser différents rôles (infirmiers, aide-soignant, sapeur-pompier) en fonction des besoins du scénario.

Durant le déroulement des différents scénarii les autres participants assistaient à l'intervention du binôme dans la salle de débriefing voisine via un système de retransmission audio et vidéo.

D. Débriefing

Chaque passage était clôturé par une phase de débriefing individuelle et collective dirigée par le médecin formateur.

Le but était d'amener les intervenants vers la restitution d'un feed-back constructif selon les bonnes pratiques du débriefing.

A la fin de la séance de formation tous les participants ont déclaré avoir assimilé les différentes prises en charge. Tous les enseignements dispensés aux internes étaient conformes aux dernières recommandations des sociétés savantes et conférences d'experts.
VI. Évaluation des compétences à six semaines, six mois et un an

A. Déroulement de la période d’évaluation

L’ensemble des participants des groupes ACC et CA ont été convoqués de façon individuelle à six semaines (T0), six mois (T1) et un an (T2) à compter de la date de formation pratique initiale.

Chacun des internes a été évalué sur sa prise en charge pour deux situations critiques : la fibrillation ventriculaire réfractaire (FV) et le choc anaphylactique de grade 3 (CA3).

Les deux scénarii étaient les mêmes pour tous les étudiants. L’interne jouait le rôle du médecin en charge de la décision médicale, il était accompagné d’un infirmier diplômé d’état et d’un facilitateur. L’environnement, à savoir les locaux et le matériel disponible, était le même que lors de la phase de formation.

Au décours de cette phase d’évaluation individuelle, l’interne a bénéficié d’un débriefing.

A la fin de la séance il était demandé aux internes de ne pas divulguer le contenu des scénarii aux futurs participants.

B. Scénario choc anaphylactique de grade 3 (CA3)

Le pré-briefing était le suivant : « vous êtes l’interne de garde en intra-hospitalier et vous êtes appelé dans un service de médecine conventionnelle par l’infirmier pour évaluer un malade qui ne va pas bien ».

Au commencement de l’exercice simulé l’IDE expliquait que le patient était hospitalisé pour un premier épisode de pneumopathie communautaire et n’avait aucun antécédent notable.
Le mannequin déjà scopé par le facilitateur objectivait un collapsus vasculaire associant tachycardie et hypotension artérielle (photo 1). La saturation pulsée de l’oxygène (SpO2) en air ambiant était de 92% avec un bronchospasme auscultatoire. Via un micro intégré au mannequin, l’un des formateurs simulait une sensation de malaise profond associé à un prurit intense et un érythème diffus. Une perfusion d’antibiotique par amoxicilline-acide clavulanique était en cours (photo 2).

Photo 1 : scénario CA3

Photo 2 : scénario CA3
C. Scénario fibrillation ventriculaire réfractaire (FV)

Le pré-briefing était le suivant : « vous êtes l’interne séniorisant une équipe de SMUR (service mobile d’urgence et de réanimation) accompagné par un infirmier spécialisé. L’intervention a lieu au domicile d’un homme de 50 ans en arrêt cardiaque où un sapeur-pompier est déjà en train d’effectuer un massage cardiaque externe ».

Au commencement de l’exercice simulé le mannequin était inconscient, sans pouls palpable, non scopé et non perfusé. Une fois scopé le tracé était celui d’une fibrillation ventriculaire (photo 3, 4 et 5).
D. Grilles d’évaluation

Tous les participants ont été évalués selon les mêmes critères à l’aide de grilles adaptées de celles publiées et validées par des comités d’experts : CFAR (Collège Français des Anesthésistes Réanimateurs) et autres sociétés savantes. Ces grilles ont été modifiées pour des raisons pratiques et pédagogiques. La grille du scénario FV est cotée sur un total de 20 points, et celle du scénario CA3 sur un total de 30 points (Annexe 1 et 2).

Les deux médecins situés derrière une vitre sans teint étaient chargés de remplir ces grilles et de chronométrer les participants.
VII. Le centre de simulation

A. Le centre PRESAGE

La faculté de médecine Henri Warembourg de Lille est dotée du centre de simulation PRESAGE (Plateforme de Recherche et d’Enseignement par la Simulation pour l’apprentissage des Attitudes et des Gestes) créé en 2012.

Il dispose de près de 450 mannequins et simulateurs au total, dont un mannequin complexe de très haute-fidélité utilisé pour cette étude. Il s’agit du modèle HPS® (Human Patient Simulator) créé par METI (Medical Education Technologies Inc.), repris par la société CAE Healthcare.

B. Mannequin HPS®

Ce mannequin intègre des modélisations cardiovasculaire, respiratoire, neurologique et pharmacologique, en faisant l’un des plus réalistes et sophistiqués. Il est spécialement dédié à la formation aux situations critiques en anesthésie réanimation grâce à un mécanisme unique de simulation des poumons, d’échanges gazeux et de réponses pharmacologiques.

Il offre un réalisme visuel et morphologique en reproduisant l’anatomie des voies aériennes pour l’intubation, un pouls radial et carotidien palpable, les bruits respiratoires ainsi que les bruits du cœur et des rythmes variables. Un système audio intégré permet d’augmenter le réalisme et l’interactivité en créant la voix du patient. Le simulateur HPS a une physiologie semblable à celle des êtres humains et il peut être connecté aux moniteurs de patient permettant de visualiser une SpO2, une capnométrie ou encore différents rythmes cardiaques (photos 6 et 7).

Enfin il possède une interface informatique complexe permettant de reproduire un grand nombre de paramètres vitaux et de signes cliniques en accord avec le tableau physiologique ou pathologique souhaité. Le pilotage et les réponses aux actions des participants peuvent être gérés à la fois par un instructeur aux manettes, et également...
de façon automatisée via des programmes informatisés intégrant des modèles physiologiques (photos 8 et 9).

Le réalisme de la reproduction physique a des limites : la coloration cutanée, la température ou encore la sudation ne sont pas simulables.
Photo 8 : Interface informatique

Photo 9 : Interface informatique et système audio vidéo
C. Autres Matériels disponibles

Pour favoriser l’immersion et assurer la bonne réalisation de l’exercice simulé les participants disposaient de tout le matériel nécessaire. Un chariot d’urgence était disponible contenant tous les solutés et drogues nécessaires ainsi que le matériel de perfusion. Il y avait également du matériel de ventilation et d’intubation, un défibrillateur, un respirateur, ainsi qu’un moniteur multi paramétrique (photo 10).

Photo 10 : matériels disponibles
VIII. Statistiques

A. Création des sous-groupes

Afin de réaliser des analyses par sous-groupes les items des grilles d’évaluations ont été réunis par famille. Tous les items ont été utilisés.

Pour le scénario FV, les items ont été réunis en 3 sous-groupes :
- « FVdiag » (diagnostic) comprenant les items de la vérification de l’arrêt cardiaque et celui du diagnostic de FV;
- « FValgo » (algorithme de prise en charge) comprenant les items réanimation cardio-pulmonaire, choc électrique externe et intubation;
- « FVdrugs » (injection de drogues) comprenant les items injection adrénaline et d’amiodarone avec la posologie et le temps d’administration.

Pour le scénario CA3 les items ont été réunis en 6 sous-groupes :
- « CA3diag » (diagnostic) comprenant les items fréquence cardiaque, tension artérielle, auscultation et diagnostic de grade 3;
- « CA3adré » (injection d’adrénaline) comprenant les items posologie d’adrénaline, délai d’administration et second bolus;
- « CA3remp » (remplissage) comprenant les items délai d’administration du remplissage, type de soluté et accélérateur de perfusion;
- « CA3prél » (prélèvements) correspondant à l’item prélèvements après stabilisation;
- « CA3atb » (antibiotique) correspondant à l’item arrêt de l’allergène;
- « CA3tttbis » (traitements associés) comprenant les items corticoïdes, anti-H1, aérosols et oxygénothérapie.
B. Analyses statistiques

Les paramètres qualitatifs ont été décrits en termes de fréquence et de pourcentage. Les paramètres quantitatifs ont été décrits en termes de médiane et d’étendue.

Pour la comparaison des distributions des paramètres numériques entre les groupes, un test du U de Mann-Whitney a été utilisé. Pour la comparaison des fréquences des paramètres binaires entre les groupes, un test du Khi-deux a été utilisé.

Pour l’évaluation de l’évolution entre les différents temps, un test de Wilcoxon apparié a été réalisé pour les paramètres quantitatifs, et un test de Mc Nemar pour les paramètres binaires.

Les statistiques ont été réalisées par l’unité de méthodologie biostatistique du CHRU de Lille.

Le niveau de significativité a été fixé à 5%.

Les tableaux et figures ont été créés à l’aide du logiciel Microsoft Excel 2013®
Résultats

I. Population incluse

Pour rappel la population globale concernait 46 internes : 24 DESAR et 22 DESCMU, dont 24 femmes et 22 hommes.

Sur les 46 internes concernés par l’étude, tous ont participé à la phase de formation théorique et ont souhaité participer aux séances de simulation.

Les deux groupes ACC et CA de 23 internes ont ainsi été constitués, contenant chacun 12 DESAR et 11 DESCMU.

La totalité des participants a assisté à la phase de formation pratique sur simulateur.

Lors des phases d’évaluations : 43 internes ont participé à T0 (22 dans le groupe ACC et 21 dans le groupe CA), 44 internes ont participé à T1 (23 dans le groupe ACC et 21 dans le groupe CA) ; 34 internes ont participé à T2 (17 dans chacun des groupes).

Il existe 26 % de perdus de vue à 1 an (diagramme 1).
Diagramme 1 : Diagramme de flux de l'étude

Groupe ACC= formé à l'arrêt cardiaque ; groupe CA= formé au choc anaphylactique ; T0= 6 semaines ; T1= 6 mois ; T2= 1 an.
II. Évaluation du bénéfice pédagogique de la simulation

A. Scénario FV

Sur le scénario FV les notes obtenues par le groupe ACC, formé à l’arrêt cardiaque sur simulateur, étaient significativement supérieures à celles du groupe CA que ce soit à 6 semaines (T0), 6 mois (T1) et 1 an (T2) (tableau 1) (figure 1).

<table>
<thead>
<tr>
<th></th>
<th>Groupe ACC</th>
<th>Groupe CA</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0FV</td>
<td>18,09 (15,18 - 20)</td>
<td>7,48 (2,02 - 12,94)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T1FV</td>
<td>18,30 (15,86 - 20)</td>
<td>14,43 (10,13 - 18,73)</td>
<td>0,0011</td>
</tr>
<tr>
<td>T2FV</td>
<td>18,94 (17,05 - 20)</td>
<td>14,53 (10,80 - 18,28)</td>
<td>0,0002</td>
</tr>
</tbody>
</table>

Tableau 1: moyennes obtenues (avec leurs écarts-types) pour le scénario FV par les groupes ACC et CA aux différents temps d’évaluation; seuil de significativité "p".

Figure 1 : BoxPlots représentant la répartition des moyennes obtenues par les groupes ACC et CA pour le scénario FV aux différents temps d’évaluation.
B. Scénario CA3

Sur le scénario CA3 les notes obtenues par le groupe CA, formé au choc anaphylactique sur simulateur, étaient significativement supérieures à celles du groupe ACC que ce soit à 6 semaines (T0), 6 mois (T1) et 1 an (T2) (Tableau 2, figure2).

<table>
<thead>
<tr>
<th></th>
<th>Groupe ACC</th>
<th>Groupe CA</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0CA3</td>
<td>15,50 (7,55 - 23,45)</td>
<td>27,10 (24,04 - 30)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T1CA3</td>
<td>21,91 (16,66 - 27,16)</td>
<td>28,52 (26,95 - 30)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T2CA3</td>
<td>23,76 (20,32 - 27,20)</td>
<td>28,18 (26,48 - 29,88)</td>
<td>< 0,0001</td>
</tr>
</tbody>
</table>

Tableau 2: moyennes obtenues (avec leurs écarts-types) pour le scénario CA3 par les groupes ACC et CA aux différents temps; seuil de significativité "p".

Figure 2 : BoxPlots représentant la répartition des moyennes obtenues par les groupes ACC et CA pour le scénario CA3 aux différents temps d'évaluation.
C. Analyse par sous-groupes

1. **Sous-groupes FV**

Pour les sous-groupes « diagnostic » (FVdiag) et « respect de l'algorithme » (FValgo): les notes du groupe ACC, formé à l'arrêt cardiaque, étaient significativement supérieures à celles du groupe CA que ce soit à 6 semaines (T0), 6 mois (T1) et 1 an (T2).

Pour le sous-groupe « injection d'adrénaline et amiodarone » (FVdrugs) : les notes du groupe ACC étaient significativement supérieures à celles du groupe CA à T0 ; absence de différence significative à T1 ; « tendance » à être supérieures à T2 (α compris entre 0,05 et 0,08) (tableau 3).

Tableau 3 : moyennes obtenues (avec leurs écarts-types) aux sous-groupes du scénario FV par les groupes ACC et CA aux différents temps; seuil de significativité "p".

<table>
<thead>
<tr>
<th></th>
<th>Groupe ACC</th>
<th>Groupe CA</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0FVdiag</td>
<td>3,64 (2,46 - 4,82)</td>
<td>1,67 (-0,6 - 3,94)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T1FVdiag</td>
<td>3,78 (2,93 - 4,63)</td>
<td>2,29 (0,19 - 4,39)</td>
<td>0,007</td>
</tr>
<tr>
<td>T2FVdiag</td>
<td>3,53 (2,2 - 4,86)</td>
<td>1,65 (-0,38 - 3,68)</td>
<td>< 0,0041</td>
</tr>
<tr>
<td>T0FValgo</td>
<td>11,82 (11,16 - 12,48)</td>
<td>8,48 (5,77 - 11,19)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T1FValgo</td>
<td>11,87 (11,24 - 12,5)</td>
<td>10,48 (8,85 - 12,11)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T2FValgo</td>
<td>12 (12 - 12)</td>
<td>11,18 (10,3 - 12,06)</td>
<td>< 0,0007</td>
</tr>
<tr>
<td>T0FVdrugs</td>
<td>2,64 (0,28 - 5)</td>
<td>-2,67 (-6,02 - 0,68)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T1FVdrugs</td>
<td>2,7 (0,67 - 4,73)</td>
<td>1,67 (-0,6 - 3,94)</td>
<td>0,1019</td>
</tr>
<tr>
<td>T2FVdrugs</td>
<td>3,41 (2,04 - 4,78)</td>
<td>1,71 (-1,16 - 4,58)</td>
<td>0,0791</td>
</tr>
</tbody>
</table>
2. **Sous-groupes CA3**

Pour les sous-groupes « diagnostic » (CA3diag), « injection d’adrénaline » (CA3adré) et « traitement associés » (CA3tttbis) le groupe CA, formé au choc anaphylactique, est significativement meilleur que le groupe ACC que ce soit à 6 semaines (T0), 6 mois (T1) et 1 an (T2). Pour le « remplissage » (CA3remp) le groupe CA est significativement meilleur à T0 et T2. Pour les « prélèvements » (CA3prel) le groupe CA est significativement meilleur à T0 et T1. Pour « l’arrêt de l’allergène » (CA3atb) le groupe CA est significativement meilleur que le groupe ACC à T0 (tableau 4).

<table>
<thead>
<tr>
<th></th>
<th>Groupe ACC</th>
<th>Groupe CA</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 CA3diag</td>
<td>3,91 (2,8 - 5,02)</td>
<td>4,86 (4,5 - 5,22)</td>
<td>0,0006</td>
</tr>
<tr>
<td>T1 CA3diag</td>
<td>4,3 (3,6 - 5)</td>
<td>4,95 (4,73 - 5,17)</td>
<td>0,0003</td>
</tr>
<tr>
<td>T2 CA3diag</td>
<td>4,53 (3,91 - 5,15)</td>
<td>5 (5 - 5)</td>
<td>0,0038</td>
</tr>
<tr>
<td>T0 CA3adré</td>
<td>6,09 (2,56 - 9,62)</td>
<td>8,29 (6,1 - 10,48)</td>
<td>0,0002</td>
</tr>
<tr>
<td>T1 CA3adré</td>
<td>7,61 (5,2 - 10,02)</td>
<td>9 (9 - 9)</td>
<td>0,0008</td>
</tr>
<tr>
<td>T2 CA3adré</td>
<td>8,06 (7,09 - 9,03)</td>
<td>8,88 (8,39 - 9,37)</td>
<td>0,0041</td>
</tr>
<tr>
<td>T0 CA3remp</td>
<td>3,73 (0,21 - 7,25)</td>
<td>6,81 (5,83 - 7,79)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T1 CA3remp</td>
<td>5,91 (3,89 - 7,93)</td>
<td>6,9 (6,01 - 7,79)</td>
<td>NS (0,1332)</td>
</tr>
<tr>
<td>T2 CA3remp</td>
<td>5,88 (3,62 - 8,14)</td>
<td>7,12 (6,79 - 7,45)</td>
<td>0,0095</td>
</tr>
<tr>
<td>T0 CA3prel</td>
<td>0,82 (-0,55 - 2,19)</td>
<td>3 (3 - 3)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T1 CA3prel</td>
<td>1,04 (-0,42 - 2,5)</td>
<td>2,86 (2,21 - 3,51)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T2 CA3prel</td>
<td>1,59 (0,05 - 3,13)</td>
<td>2,29 (0,98 - 3,6)</td>
<td>NS (0,1512)</td>
</tr>
<tr>
<td>T0 CA3atb</td>
<td>-2,05 (-4,57 - 0,47)</td>
<td>0 (0 - 0)</td>
<td>0,0014</td>
</tr>
<tr>
<td>T1 CA3atb</td>
<td>-0,43 (-1,87 - 1,01)</td>
<td>0 (0 - 0)</td>
<td>NS* (0,1820)</td>
</tr>
<tr>
<td>T2 CA3atb</td>
<td>-0,29 (-1,5 - 0,92)</td>
<td>0 (0 - 0)</td>
<td>NS* (0,3466)</td>
</tr>
<tr>
<td>T0 CA3tttbis</td>
<td>2,41 (0,52 - 4,3)</td>
<td>4,19 (3,11 - 5,27)</td>
<td>0,0018</td>
</tr>
<tr>
<td>T1 CA3tttbis</td>
<td>3,43 (2,05 - 4,81)</td>
<td>4,81 (4,13 - 5,49)</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>T2 CA3tttbis</td>
<td>4 (2,73 - 5,27)</td>
<td>4,88 (4,39 - 5,37)</td>
<td>0,0157</td>
</tr>
</tbody>
</table>

Tableau 4: moyennes obtenues (avec leurs écarts-types) aux sous-groupes du scénario CA3 par les groupes ACC et CA aux différents temps; seuil de significativité "p" ; NS= non significatif.
III. Évolution des notes entre les trois temps

A. Groupe ACC

- Pour le scénario FV sur lequel le groupe est formé : il n’existe pas d’amélioration significative des notes entre les différents temps d’évaluation ;

- Pour le scénario CA3 sur lequel le groupe n’est pas initialement formé sur simulateur : il existe une amélioration significative des notes à 6 mois (T1) et 1 an (T2) par rapport aux notes obtenues à 6 semaines (T0). Cependant il n’existe pas d’amélioration significative entre T1 et T2 (tableau 5, figure 3).

<table>
<thead>
<tr>
<th>Groupe ACC</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV</td>
<td>18,09 (15,18 - 20)</td>
<td>18,30 (15,86 - 20)</td>
<td>18,94 (17,05 - 20)</td>
<td>0,6663</td>
</tr>
<tr>
<td>CA3</td>
<td>15,50 (7,55 - 23,45)</td>
<td>21,91 (16,66 - 27,16)</td>
<td>23,76 (20,32 - 27,20)</td>
<td>0,0003</td>
</tr>
</tbody>
</table>

tableau 5: évolution des notes du groupe ACC pour les scénarios FV et CA3 aux différents temps d’évaluation; seuil de significativité "p".

Figure 3 : BoxPlots de l’évolution des notes du groupe ACC pour les scénarios FV et CA3 aux différents temps d’évaluation.
B. Groupe CA

- **Pour le scénario FV** sur lequel le groupe n'est pas initialement formé sur simulateur : il existe amélioration significative des notes à 6 mois (T1) et 1 an (T2) par rapport aux notes obtenues à 6 semaines (T0). Cependant il n'existe pas d'amélioration significative entre T1 et T2 ;

- **Pour le scénario CA3** sur lequel le groupe est formé : il existe une amélioration significative des notes à 6 mois (T1) et 1 an (T2) par rapport aux notes obtenues à 6 semaines (T0). Cependant il n'existe pas d'amélioration significative entre T1 et T2 (tableau 6, figure 4).

<table>
<thead>
<tr>
<th>Groupe CA</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV</td>
<td>7,48 (2,02 - 12,94)</td>
<td>14,43 (10,13 - 18,73)</td>
<td>14,53 (10,80 - 18,28)</td>
<td>0,0002</td>
</tr>
<tr>
<td></td>
<td>14,43 (10,13 - 18,73)</td>
<td>14,53 (10,80 - 18,28)</td>
<td></td>
<td>0,4857</td>
</tr>
<tr>
<td>CA3</td>
<td>27,10 (24,04 - 30)</td>
<td>28,52 (26,95 - 30)</td>
<td>28,18 (26,48 - 29,88)</td>
<td>0,0065</td>
</tr>
<tr>
<td></td>
<td>28,52 (26,95 - 30)</td>
<td>28,18 (26,48 - 29,88)</td>
<td></td>
<td>0,5703</td>
</tr>
</tbody>
</table>

Tableau 6 : évolution des notes du groupe CA pour les scénarii FV et CA3 aux différents temps d'évaluation; seuil de significativité "p".

Figure 4 : BoxPlots de l’évolution des notes du groupe CA pour les scénarii FV et CA3 aux différents temps d'évaluation.
C. Analyse par sous-groupes

1. **Groupe ACC**

- Pour le scénario FV sur lequel le groupe est formé : il n’existe pas d’amélioration significative des notes entre les différents temps d’évaluation pour aucun des sous-groupes ;

- Pour le scénario CA3 sur lequel le groupe n’est pas initialement formé sur simulateur : il existe une amélioration significative des notes à 6 mois (T1) et 1 an (T2) par rapport aux notes obtenues à 6 semaines (T0) pour le sous-groupe « traitement associés » (tttbis). Il existe une amélioration significative des notes à 6 mois (T1) par rapport aux notes obtenues à 6 semaines (T0) pour les sous-groupes « injection d’adrénaline » (adré), « remplissage » (remp) et « arrêt de l’allergène » (atb) (**tableau 7**).

<table>
<thead>
<tr>
<th>Groupe ACC</th>
<th>sous-groupes</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>diag</td>
<td>3,64 (2,46 - 4,82)</td>
<td>3,78 (2,93 - 4,63)</td>
<td>3,78 (2,93 - 4,63)</td>
<td>3,53 (2,2 - 4,86)</td>
</tr>
<tr>
<td></td>
<td>alg</td>
<td>11,82 (11,16 - 12,48)</td>
<td>11,87 (11,21 - 12,50)</td>
<td>11,87 (11,21 - 12,50)</td>
<td>12,00 (12,00 - 12,00)</td>
</tr>
<tr>
<td></td>
<td>drugs</td>
<td>3,64 (2,46 - 4,82)</td>
<td>2,64 (2,08 - 5,00)</td>
<td>2,70 (0,67 - 4,73)</td>
<td>2,70 (0,67 - 4,73)</td>
</tr>
<tr>
<td></td>
<td>diag</td>
<td>3,91 (2,80 - 5,02)</td>
<td>4,30 (3,60 - 5,00)</td>
<td>4,30 (3,60 - 5,00)</td>
<td>4,53 (3,91 - 5,15)</td>
</tr>
<tr>
<td></td>
<td>ade</td>
<td>6,09 (5,56 - 9,62)</td>
<td>6,09 (5,56 - 9,62)</td>
<td>7,61 (5,20 - 10,02)</td>
<td>7,61 (5,20 - 10,02)</td>
</tr>
<tr>
<td></td>
<td>remp</td>
<td>3,73 (2,11 - 7,25)</td>
<td>3,73 (2,11 - 7,25)</td>
<td>5,91 (3,89 - 7,93)</td>
<td>5,91 (3,89 - 7,93)</td>
</tr>
<tr>
<td></td>
<td>prel</td>
<td>0,82 (-0,55 - 2,19)</td>
<td>1,04 (-0,42 - 2,50)</td>
<td>1,04 (-0,42 - 2,50)</td>
<td>1,59 (0,05 - 3,13)</td>
</tr>
<tr>
<td></td>
<td>atb</td>
<td>-2,05 (-4,57 - 0,47)</td>
<td>-0,43 (-1,87 - 1,01)</td>
<td>-0,43 (-1,87 - 1,01)</td>
<td>-0,29 (-1,50 - 0,92)</td>
</tr>
<tr>
<td></td>
<td>tttbis</td>
<td>2,41 (0,52 - 4,30)</td>
<td>2,41 (0,52 - 4,30)</td>
<td>3,43 (2,05 - 4,81)</td>
<td>3,43 (2,05 - 4,81)</td>
</tr>
</tbody>
</table>

Tableau 7
2. **Groupe CA**

- Pour le scénario FV sur lequel le groupe n’est pas initialement formé sur simulateur : il existe une amélioration significative des notes à 6 mois (T1) et 1 an (T2) par rapport aux notes obtenues à 6 semaines (T0) pour les sous-groupes « algorithme de prise en charge » (algo) et « injection de drogues » (drugs) ; Cependant il n’existe pas d’amélioration significative entre T1 et T2. Absence de différence significative pour le sous-groupe « diagnostic ».

- Pour le scénario CA3 sur lequel le groupe est formé : il existe une amélioration significative des notes à 6 mois (T1) et 1 an (T2) par rapport aux notes obtenues à 6 semaines (T0) pour le sous-groupe « traitements associés » ; absence d’amélioration significative entre T1 et T2 (**tableau 8**).

<table>
<thead>
<tr>
<th>Groupe CA</th>
<th>sous-groupes</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV</td>
<td>diag</td>
<td>1.67 (-0.60 - 3.94)</td>
<td>2.29 (0.16 - 4.39)</td>
<td>1.65 (-0.38 - 3.68)</td>
<td>0.3420</td>
</tr>
<tr>
<td></td>
<td>algo</td>
<td>8.48 (5.77 - 11.19)</td>
<td>10.48 (8.85 - 12.11)</td>
<td>11.18 (10.30 - 12.06)</td>
<td>0.0010</td>
</tr>
<tr>
<td></td>
<td>drugs</td>
<td>-2.67 (-6.02 - 0.68)</td>
<td>1.67 (-0.60 - 3.94)</td>
<td>1.71 (-1.16 - 4.58)</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>diag</td>
<td>4.86 (4.50 - 5.22)</td>
<td>4.95 (4.73 - 5.17)</td>
<td>5.00 (5.00 - 5.00)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>adre</td>
<td>8.29 (6.10 - 10.48)</td>
<td>9.00 (9.00 - 9.00)</td>
<td>8.88 (8.39 - 9.37)</td>
<td>0.2500</td>
</tr>
<tr>
<td></td>
<td>remp</td>
<td>6.81 (5.83 - 7.79)</td>
<td>6.90 (6.01 - 7.79)</td>
<td>7.12 (6.79 - 7.45)</td>
<td>0.0250</td>
</tr>
<tr>
<td></td>
<td>prol</td>
<td>3.00 (3.00 - 3.00)</td>
<td>2.86 (2.21 - 3.51)</td>
<td>2.29 (0.98 - 3.6)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>atb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>tttbis</td>
<td>4.19 (3.11 - 5.27)</td>
<td>4.81 (4.13 - 5.49)</td>
<td>4.88 (4.39 - 5.37)</td>
<td>0.0088</td>
</tr>
</tbody>
</table>

Tableau 8
IV. Ressenti des participants

A la fin des sessions d’évaluations le ressenti des participants a été recueilli sur la formation qu’ils avaient reçu et les bénéfices qu’ils en avaient tiré.

Tous les internes avaient déjà une expérience de la formation sur simulateur basse fidélité, la plupart via des simulateurs procéduraux, pour l’apprentissage des bases de l’intubation par exemple.

Ils ont verbalisé leur intérêt croissant pour l’utilisation de la simulation haute-fidélité comme moyen innovant et performant de formation pédagogique. Les internes étaient aussi très désireux que de nouvelles sessions puissent voir le jour sur des prises en charge de situations critiques variées, et que ce type de formation puisse être inscrit de façon systématique dans leur cursus.

Tous ont déclaré avoir tiré un bénéfice significatif de ces séances pour leur pratique quotidienne dans la gestion des situations critiques étudiées.
Discussion

En matière d’urgence et de réanimation, on attend des professionnels de santé qu’ils sachent prendre en charge efficacement tous les patients présentant une détresse vitale. Or des études ont prouvé qu’il existait une véritable carence dans ce domaine [10,11].

Cette lacune pourrait trouver son origine principalement dans les méthodes pédagogiques employées lors de la formation initiale (enseignement théorique, apprentissage par compagnonnage) et le manque d’expérience pratique du fait de la faible fréquence de survenue des urgences vitales dans l’exercice quotidien.

De plus, du fait du contexte d’urgence, ces situations ne sont pas propices à l’enseignement notamment pour l’acquisition des gestes techniques.

Les situations critiques en matières d’urgences médicale étant par définition des situations complexes et stressantes génératrices d’erreurs, il est indispensable d’optimiser les compétences des personnels intervenants.

A ce stade l’enseignement théorique complété par une formation aux gestes sur mannequins procéduraux n’est plus suffisant. Ils ne permettent pas de recréer des situations dynamiques et évolutives, faisant intervenir une multitude de compétences complexes ainsi que le travail de coordination en équipe, comme celles rencontrées sur le terrain.

L’utilisation de la simulation a été une des solutions apportée à cette problématique.

Dans une méta-analyse de 2011 [6], portant sur 619 études, Cook et al ont démontré que comparativement à la formation dite « classique » l’apprentissage par la simulation est systématiquement associé à des bénéfices reproductibles en matière d’acquisition de connaissances, d’habiletés cliniques et de soins aux patients.

Cependant la plupart des études à ce jour ne se sont concentrées que sur les bénéfices immédiats et la rétention des compétences à court terme. Notre étude est l’une des rares à avoir suivi une cohorte aussi importante de futurs médecins spécialistes sur une aussi longue période. De telles études en simulation étant peu nombreuses par souci de « perdus de vue » à distance.

Dans notre étude les participants formés sur simulateur à la prise en charge spécifique soit du choc anaphylactique soit de l’arrêt cardiaque avaient systématiquement des résultats significativement supérieurs à ceux du groupe témoin non formé sur simulateur, aussi bien à 6 semaines qu’à 6 mois et 1 an.

Le taux de perdu de vue n’excède pas 26% de la population globale initiale pour l’évaluation à 12 mois.

L’analyse des sous-groupes a montré que cette supériorité à 1 an portait pour le scénario FV sur le diagnostic et le respect de l’algorithme de prise en charge, alors qu’il n’y avait plus de différence significative sur l’injection d’adrénaline et d’amiodarone. Pour le scénario CA3 la supériorité à 1 an portait sur le diagnostic, le remplissage, l’injection d’adrénaline et la mise en route des traitements associés, soit les items les plus importants de la prise en charge.

Lorsque l’on étudie l’évolution des notes de chaque groupe dans le scénario sur lequel il est formé sur simulateur on remarque que le groupe ACC maintient ses connaissances à 1 an mais ne s’améliore pas significativement sur la prise en charge de l’arrêt cardiaque. Ceci est clairement la conséquence des notes déjà très élevées lors de l’évaluation à 6 semaines (note > 18/20 à T0), ce qui entraîne une marge de progression réduite. On pourrait en conclure qu’une seule séance de formation sur simulateur permettrait d’obtenir des compétences quasi optimales pour la prise en charge de la fibrillation ventriculaire réfractaire, comme cela est retrouvé dans d’autres études [15,16]. Cela pourrait être lié au fait que l’algorithme de prise en charge de la FV est protocolisé de façon simple.
A l'inverse, le groupe CA continue quant à lui de s'améliorer à T1 et T2 par rapport à T0 sur la prise en charge du scénario sur lequel il est formé. Ceci vient probablement de la plus grande difficulté de prise en charge du choc anaphylactique qui offrira aux participants une plus grande marge de progression lors des séances suivantes. L'étude de Jacobsen et al. confirme la difficulté de faire un diagnostic correct de choc anaphylactique [17]. Dans cette étude aucune équipe sur les 21 ne faisait de diagnostic correct de grade 3 après 10 minutes, et seulement 6 d’entre elles le posaient après 15 minutes, dans un contexte de réinjection de curare per opératoire.

Notre étude confirme donc le bénéfice pédagogique à court et moyen terme de la formation sur simulateur versus la formation classique, mais aussi à long terme, à un an. Elle démontre également et surtout que l’utilisation de la simulation permet la rétention des connaissances jusqu’à un an après la phase de formation pratique initiale.

Il n’existe que peu d’études qui se sont intéressées à la rétention des compétences et des connaissances à un an.

L’une d’elles réalisée en 2011 par Boet et al. a étudié, sur un groupe de 38 anesthésistes seniors, la rétention des compétences techniques liées à la cricothyroïdotomie lors de la prise en charge d’un patient en situation d’intubation et de ventilation impossible. Après un premier exercice simulé suivi d’un débriefing, les participants repassaient immédiatement sur le scénario pour être ensuite randomisé en deux groupes réévalués à six mois ou un an. 34 anesthésistes ont participé aux évaluations. Leurs performances (temps de procédure, score global et score de check-list de la performance technique) étaient meilleures aussi bien à 6 mois qu’à 12 mois après la formation par rapport au niveau initial avant formation par simulation. De plus il n’était pas observé de baisse de performance à 12 mois par rapport à 6 mois, ce qui témoigne d’un maintien de l’apprentissage [18].

Une autre étude a été réalisée en France en 2014, multicentrique (Amiens, Rouen et Caen) et basée sur une méthodologie similaire à la précédente. Les auteurs ont étudié la rétention des compétences pour la réalisation d’une cricothyroïdotomie selon les
mêmes critères et selon le même scénario que Boet sur une population de 27 internes d’anesthésies en 3ième année de DES. Cette fois-ci les participants ont été randomisés en trois groupes de 9 internes évalués ultérieurement à 3 mois, 6 mois ou 12 mois. Cette fois-là encore les performances étaient accrues par la simulation et étaient maintenues à 12 mois [19].

G. Alinier distingue six niveaux de simulation selon la complexité et l’interaction possible avec l’apprenant et selon les caractéristiques des simulateurs : le simulateur haute-fidélité que nous avons utilisé, et l’interaction avec les participants qu’il a offert, correspond au plus haut niveau (niveau 5) [20].

Le choix du mannequin est fondamental pour la pertinence des séances de simulation. Ainsi le type de mannequin utilisé et son niveau de réalisme et de sophistication doit reposer avant tout sur les objectifs pédagogiques précis. Le réalisme visuel et morphologique de l’équipement, comme le réalisme de l’environnement ou le réalisme psychologie ne servent qu’un but, l’immersion du participant [21].

Selon Gaba [22], la simulation est d’autant plus productive que les acteurs, intervenants, les conditions et l’environnement reproduisent la réalité. Un meilleur réalisme serait corrélé à de meilleures performances [23].

Le choix des scénarii s’est rapidement porté sur la prise en charge de l’arrêt cardiaque et du choc anaphylactique. Ce sont deux situations critiques qu’il est nécessaire de maîtriser car mettant en jeu le pronostic vital à très court terme. Le choc anaphylactique reste peu fréquent en pratique courante d’où la nécessiter importante de pouvoir se former. L’arrêt cardiaque est une pathologie plus fréquente mais la reconnaissance électrocardiographique des différents troubles du rythme et les algorithmes de prise en charge qui en découlent sont moins bien maitrisés et souvent source de confusion.

Ces deux pathologies sont surtout particulièrement adaptées à la formation sur simulateur du fait de la mise en jeu à la fois de connaissances, de capacités techniques, et de capacités non techniques comme le travail en équipe.
Le choix des scénarios est primordial dans la construction d’une séance de simulation et dans la création d’un environnement propice à l’enseignement. Le scénario doit être didactique, plausible et réaliste. L’exercice simulé ne doit pas être une situation trop catastrophique mais doit recréer un environnement proche du réel. La valeur pédagogique et le renforcement positif augmentent avec un scénario représentant une situation raisonnablement difficile et fréquente [24].

Pour être efficace la simulation doit créer un environnement psychologiquement sûr permettant une maîtrise de la situation et permettant de discuter de façon constructive des erreurs sans conséquences négatives. Le scénario doit être ajusté aux compétences des participants afin de réduire le risque de blessure psychologique face à l’échec qui aurait des répercussions catastrophiques sur l’objectif pédagogique [25].

L’analyse de l’évolution des notes au cours des trois temps d’évaluation montre que chacun des groupes s’améliore de façon significative à 6 mois et un an, par rapport à la note obtenue à 6 semaines, dans le scénario sur lequel il n’est pas formé initialement sur simulateur.

Cette amélioration est certainement générée par les phases de débriefing dispensées lors des différentes séances d’évaluation. En effet, même si la formation pédagogique initiale sur simulateur a bénéficié de longues séances de débriefing collectif, chaque participant a continué à avoir systématiquement un débriefing individuel et une remise au point à chacune de ses évaluations.

Pour faire de la simulation une véritable formation l’analyse du travail réel doit être une préoccupation permanente où le débriefing et le retour sur activité sont essentiels afin de mettre en exergue les points positifs et les lacunes de la prise en charge.

Le débriefing est considéré comme l’élément essentiel de la séance de simulation et a pour but de stimuler la réflexivité des participants.

Ses objectifs sont multiples : il optimise l’apprentissage, améliore les performances et le développement de compétences cliniques, ainsi que leur transfert en pratique clinique [26, 27].
De plus une méta-analyse de 2014 a montré qu’il n’existait pas de différence significative sur les bénéfices apportés entre un débriefing de courte durée (moins de 15 minutes) et un débriefing de longue durée (plus de 30 minutes) [28].

Le rôle essentiel du débriefing et du feed-back pour l’apprentissage en simulation a bien été démontré, même si de nombreux aspects du processus du débriefing sont encore mal compris voire inconnus [29].

Les appréciations des participants au cours de l’étude ont été très positives. Globalement tous les intervenants ont été satisfaits de l’enseignement et la plupart ont déclaré avoir tiré un bénéfice significatif de ces séances pour leur pratique quotidienne dans la gestion des situations critiques étudiées.

Les perceptions des étudiants de la qualité de l’enseignement par la simulation sont généralement très positives et entretiennent l’hypothèse que la simulation contribue à une pratique plus sécuritaire [30, 31].

Cependant l’auto évaluation des internes sur leurs nouvelles capacités fraîchement acquises n’est que subjective. De récentes études démontrent que la perception des participants de leurs propres habiletés ne prédit pas leur niveau réel de performance en pratique clinique [32] et les enseignants ne devraient donc pas se fier aux perceptions des étudiants pour témoigner de l’apprentissage réel.

Concernant les biais éventuels, on pourrait reprocher à notre étude d’être une étude ouverte. D’une part chaque participant avait pleinement conscience du scénario sur lequel il était en train d’être évalué, ce paramètre étant difficilement modifiable. D’autre part les formateurs qui encadraient les séances de simulation avaient connaissance du groupe auquel appartenaient les différents internes, avec le risque d’être influencé.

Ce biais d’évaluation est lié à la part de subjectivité inhérente à ce type d’étude, c'est le facteur humain.

Pour essayer de pallier au moins en partie à cette problématique, deux médecins ont rempli les grilles de façon concomitante. Nous avons utilisé des grilles d’évaluation
validées (par le CFAR et autres sociétés savantes) et des scénarii reproductibles. Nous avons déjà traité précédemment de l’importance de la construction du scénario, mais la création de grilles d’évaluations cohérentes est tout aussi importante. Les moyens d’y parvenir sont de faire appel à des grilles validées par des comités d’experts, et d’utiliser des procédures de « méta-évaluations » (= l’évaluation d’une méthode d’évaluation ou de plusieurs évaluations en vue de juger de sa qualité et d’apprécier la performance des équipes d’évaluateurs) [33].

Une des limites de notre étude est l’absence d’évaluation des capacités non techniques déployées lors de la réalisation des exercices simulés. Cela ne rentrait pas dans le cadre de nos objectifs et nos grilles de cotation ne listaiennt que des items en rapport avec des savoirs et des connaissances techniques individuelles.

Les compétences non techniques des professionnels de santé sont maintenant reconnues comme essentielles pour une prise en charge optimale des patients. L’amélioration de la qualité et de la sécurité des soins ne passe pas seulement par l’acquisition de compétences individuelle mais aussi par l’efficience du travail en équipe [34].

Ils permettent l’enseignement de notions comme la communication verbale et non verbale ou encore le leadership, le tout dans le but d’accroître la qualité du travail d’équipe en situation de crise.

De plus en plus d’étude en simulation médicale s’intéressent donc ces dernières années à la formation et à l’évaluation du travail en équipe [38,39].
Les internes ayant participés à notre étude étaient très désireux que l’enseignement par simulation haute-fidélité puisse être inscrit de façon systématique dans leur cursus universitaire.

L’intérêt pédagogique de ce type de formation, même de façon ponctuelle, est largement démontré. Mais il serait certainement bien plus bénéfique si ces formations pouvaient être renouvelées afin de garder un niveau de connaissances et de compétences optimal [40]. Il faudrait ainsi éviter de proposer des séances isolées de simulation aux futurs professionnels et il serait préférable d’inscrire la formation dans le temps, ainsi que dans un programme pédagogique de formation médicale initiale.

Une lecture de la littérature médicale aux États-Unis démontre non seulement l’intégration parfaite de la simulation médicale dans les programmes pédagogiques, mais également l’impact positif de ces techniques dans l’objectif final d’amélioration de l’enseignement et de la formation [41, 42].

La France essaie dans ce contexte de rattraper son retard. Le ministère de la santé a fait de la simulation en santé une de ses priorités ces dernières années [43].

Depuis janvier 2012, la Haute Autorité de Santé a réalisé et mis en ligne un rapport sur l’ « état de l’art en matière de pratiques de simulation dans le domaine de la santé à l’attention des structures, des organisations professionnelles et institutionnelles souhaitant recourir à la simulation ». Ce rapport se termine par dix propositions dont la première recommande « l’intégration de la simulation dans tous les programmes d’enseignement des professionnels de santé, à toutes les étapes de leur cursus » [44].
Conclusion

La simulation médicale a su s'imposer ces dernières années comme une méthode de formation incontournable pour tous les professionnels de santé en créant un environnement où la technologie est au service de la pédagogie.

Cette pratique accélère la courbe d’apprentissage des « gestes qui sauvent ». Elle offre un milieu centré sur l’apprenant qui peut alors développer son potentiel à un rythme approprié. Le débriefing fournit une rétro-action réaliste et pédagogique aux questions, décisions et actions de l’usager. Ce mode d’enseignement en fait une méthode plus performante que la formation théorique classique, aussi bien pour l’acquisition des compétences techniques que non techniques.

Les compétences acquises en simulation sont maintenues à court et moyen terme, mais aussi sur le long terme, jusqu’à 1 an après une seule séance de formation.

Des séances répétées d’exercices simulés, même de courte durée, permettent une amélioration significative des résultats et une amélioration des prises en charge.

La simulation jouit d’un fort impact positif sur les participants qui en bénéficient. C’est un outil pédagogique moderne et motivant. Tous aimaient voir cette méthode se développer dans leur cursus professionnel.

La simulation n’a pas pour but de remplacer l’enseignement au lit du malade, ni l’enseignement théorique ou facultaire, mais c’est un complément indispensable. Elle est un outil puissant qui permet de compléter l’expérience clinique en renforçant l’apprentissage cognitif, en augmentant la possibilité de pratiquer des raisonnements diagnostiques et des gestes thérapeutiques, et en intégrant la notion d’équipe soignante, sans menaces pour la sécurité des patients.

En France, la simulation doit poursuivre son intégration actuelle dans la formation initiale et continue des médecins comme cela est déjà le cas en Amérique du Nord ou dans d’autres pays d’Europe [45, 46].
Bibliographie

Annexes

1. Grille d’évaluation du scénario FV

<table>
<thead>
<tr>
<th>Candidat n° / Scénario n°</th>
<th>Check</th>
<th>Points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSTIC DE FIBRILLATION VENTRICULAIRE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérifier l’arrêt cardiaque</td>
<td></td>
<td></td>
<td>Tps total</td>
</tr>
<tr>
<td>Absence conscience</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prise de pouls carotidien</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scope</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oubli du pouls/ scope seul</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic de fibrillation ventriculaire</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALGORITHME FIBRILLATION VENTRICULAIRE</th>
<th></th>
<th></th>
<th>Tps total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP pendant 2 min</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choc n°1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bi-phasique (150-200 J)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP pendant 2 min</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intubation / Ventilation</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choc n°2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bi-phasique (150-200 J)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP pendant 2 min</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choc n°3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bi-phasique (150-200 J)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP pendant 2 min</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection d’adrénaline</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dose de 1 mg</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autre posologie</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection < 1ᵉʳ choc</td>
<td>-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entre 1ᵉʳ et 2ième choc</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entre 2ième et 3ième choc</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection de cordarone/amiodarone</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dose de 300 mg</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autre dose/ autre timing</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choc n°4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>/20</td>
</tr>
</tbody>
</table>
2. Grille d’évaluation du scénario CA3

<table>
<thead>
<tr>
<th>Candidat n° / Scénario n°</th>
<th>Check</th>
<th>Points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSTIC DE CHOC ANAPHYLACTIQUE GRADE 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic état de choc grade 3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tachycardie</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA avt tt la FC</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>auscultation cardio pulmonaire</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygénothérapie : masque/ lunette</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 5 min</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 5 min</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 8 min</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrêt de l’allergène suspecté</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oubli d’arrêter l’ATB</td>
<td>-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADRENALINE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durée écoulée avant initiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 4 min</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entre 4 et 5 min</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entre 5 et 6 min</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 6 min ou pas fait</td>
<td>-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posologie 1ère dose administrée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 20 µg</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entre 20 et 200 µg</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entre 201 et 500 µg</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entre 501 et 999 µg</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1 mg</td>
<td>-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second bolus</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>REPLISSAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durée écoulée avant initiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 4 min</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entre 4 et 5 min</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entre 5 et 6 min</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 6 min ou pas fait</td>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>util blood pump, 2ième VVP,…etc</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>éviter solutés allergisants</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres médicaments : corticoides, anti H1,…etc.</td>
<td>1+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prélèvements à réaliser APRÉS stabilisation</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
AUTEUR : Nom : QUEVA Prénom : Charles
Date de Soutenance : 23 septembre 2015
Titre de la Thèse : La simulation médicale comme moyen pédagogique : intérêt à un an.
Thèse - Médecine - Lille 2015
Cadre de Classement : simulation médicale, urgence, réanimation
DES + spécialité : DES de Médecine générale – DESC de Médecine d’Urgence
Mots-clés : simulation, haute-fidélité, pédagogie, fibrillation ventriculaire, choc anaphylactique, rétention des compétences.

Résumé
Contexte : La simulation médicale est devenue une méthode pédagogique incontournable pour tous les professionnels de santé. Elle est efficace en terme d’apprentissage et améliore les compétences. Cependant la plupart des études ne se sont concentrées que sur les bénéfices immédiats et la rétention des compétences à court terme.
Objectif principal : Étudier l’intérêt et l’apport pédagogique à court, moyen et long terme de la simulation médicale par rapport à une formation classique.
Méthodes : Tous les internes de 3ème année du 3ème cycle en anesthésie-réanimation et médecine d’urgence ont été convoqués. Tous ont bénéficié d’une formation théorique avec un rappel des dernières recommandations sur la prise en charge de l’arrêt cardiaque et du choc anaphylactique. Ils ont été randomisés en 2 groupes et ont reçu une formation pratique sur simulateur haute-fidélité à la prise en charge soit de l’arrêt cardiaque (groupe ACC), soit du choc anaphylactique (groupe CA). Chaque groupe a été évalué à 6 semaines (T0), 6 mois (T1) et 1 an (T2) sur deux scénarios : une fibrillation ventriculaire réfractaire (FV) noté sur 20 points et un choc anaphylactique de grade 3 (CA3) noté sur 30 points. Chaque groupe a servi de groupe témoin à l’autre pour la pathologie dans laquelle il n’a pas reçu de formation spécifique sur simulateur. Les résultats sont exprimés en moyenne avec leurs écarts-types avec « p » < 0,05.
Conclusion : Les participants formés sur simulateur ont des résultats significativement supérieurs à ceux non formés, aussi bien à 6 semaines, 6 mois et 1 an. Les compétences et connaissances acquises en simulation sont maintenues sur le long terme jusqu’à 1 an après une seule séance de formation.

Composition du Jury :
Président : Pr Wiel Eric
Assesseurs : Pr Jourdain Mercé, Dr-MCU Renard Jean-Marie, Dr Nunes Frédérico, Dr Coffin Pierre.