EVALUATION DE LA PRISE EN CHARGE DU PATIENT OBESE EN REANIMATION

Présentée et soutenue publiquement
le 11 septembre 2012 par

Yannick HOMS

Jury

Président : Monsieur le Professeur Benoît TAVERNIER
Assesseurs : Monsieur le Professeur Gilles DHONNEUR
 Monsieur le Professeur Raphaël FAVOR
Directeur de Thèse : Madame le Docteur Martine NYUNGA MAKENGA
Liste des abréviations

AT : Accident de travail
AS : Aide-soignant
BIPAP : Bi-level Positive Airway Pressure
CH : Centre Hospitalier
CIM 10 : Classification Internationale des Maladies et des problèmes de santé
IDE : Infirmier diplômé d’état
IGS II : Indice de Gravité Simplifié
IMC : Index de Masse Corporelle
NEE : Nutrition Entérale Exclusive
NM : Nutrition Mixte
NOP : Nutrition Orale Physiologique
NPE : Nutrition Parentérale Exclusive
OMS : Organisation Mondiale de la Santé
PA : Poids Ajusté
PAVM : Pneumopathie Acquise sous Ventilation Mécanique
PI : Poids Idéal
PIT : Poids Idéal Théorique
PR : Poids Réel
SAOS : Syndrome d’Apnée Obstructive du Sommeil
SDRA : Syndrome de Détresse Respiratoire Aigu
VAC : Ventilation Assistée Contrôlée
VNI : Ventilation Non Invasive
VSAI : Ventilation Spontanée avec Aide Inspiratoire
TABLE DES MATIERES
INTRODUCTION .. 14

MATERIEL ET METHODE ... 18

I/ L’étude ... 19
 a/ Type d’étude .. 19
 b/ Critères d’inclusion ... 19
 c/ Critères d’exclusion ... 20

II/ Population étudiée : ... 20
 a/ Sélection des patients ... 20
 b/ Le recueil de données ... 21
 i/ Les caractéristiques clinico-démographiques ... 21
 ii/ Les complications survenues au cours du séjour ... 22
 iii/ La ventilation au cours du séjour ... 23
 iv/ L’alimentation durant l’hospitalisation .. 23

III/ Recueil du retentissement des contraintes physico-psychiques de la prise en charge du patient obèse en réanimation : 24
 a/ Retentissement sur le personnel .. 24
 b/ Recensement du matériel disponible .. 25
 c/ Formation du personnel ... 25

IV/ Analyse statistique .. 26

RESULTATS .. 27

I/ Description de la population étudiée ... 28
 a/ Analyse globale .. 28
 b/ Caractéristiques clinico-démographiques .. 29
 i/ L’âge ... 29
ii/ Le sexe .. 30
iii/ L’index de Masse Corporelle et le poids ... 30
iv/ Le score IGS II .. 30
v/ Le motif d’hospitalisation .. 30
vi/ Les comorbidités .. 32
c/ L’alimentation ... 33
 i/ Le type de nutrition .. 33
 ii/ La mise en route de l’alimentation .. 34
 iii/ Les complications de l’alimentation ... 35
 iv/ L’insulinothérapie .. 36
d/ La ventilation .. 36
 i/ Le type de ventilation ... 36
 ii/ Le mode ventilatoire .. 37
 iii/ La durée de ventilation .. 38
e/ Le devenir des patients .. 39
 i/ Les complications .. 39
 ii/ La durée d’hospitalisation .. 40
 iii/ Analyse des décès .. 41

II/ Identification de facteurs prédictifs de mortalité ... 46
 a/ L’index de masse corporelle ... 46
 b/ Le motif d’hospitalisation .. 46
 c/ Les comorbidités .. 47
 i/ Tabagisme ... 47
 ii/ Insuffisance respiratoire ... 47
 iii/ Diabète ... 48
iv/ Insuffisance coronarienne ... 48
v/ Insuffisance cardiaque ... 48
d/ L’alimentation .. 49
 i/ Le type de nutrition ... 49
 ii/ Insulinothérapie .. 49
e/ La ventilation ... 50
 i/ Le type de ventilation ... 50
 ii/ Le mode ventilatoire ... 50
 iii/ La durée de ventilation ... 51
f/ La durée d’antibiothérapie ... 51
g/ Les complications ... 52
 i/ Complications infectieuses ... 52
 ii/ Complications respiratoires .. 52
 iii/ Complications cardio-vasculaires 53
 iv/ Escarres .. 53
 v/ Iatrogénie .. 53
 vi/ Complications thromboemboliques 54

h/ Résumé de l’analyse bivariée .. 54

III/ Identification de facteurs indépendants de mortalité 55

IV/ Retentissement des contraintes physico-psychiques 56

a/ Retentissement sur le personnel .. 56
 i/ Déclarations d’accident de travail ... 56
 ii/ Enquête subjective anonyme du personnel 60
b/ Recensement du matériel disponible 64
c/ Formation du personnel ... 65
DISCUSSION	..	67
CONCLUSION	..	85
ANNEXES	..	88
Annexe 1. Score IGSII	..	89
Annexe 2. Mesure de la Hauteur du Genou	90
Annexe 3. Mesure de la Demi-Envergure du bras	91
BIBLIOGRAPHIE	..	92
INTRODUCTION
L’obésité est considérée comme une épidémie par l’Organisation mondiale de la santé (OMS). Elle constitue un véritable problème de santé publique, car cet état pathologique, caractérisé par un excès de masse adipeuse, touche toutes les tranches d’âge et toutes les professions. En effet, dans le monde, 300 millions d’adultes sont en surcharge pondérale, et souffrent de pathologies liées à leur poids pour la majeure partie d’entre eux. Elle prédomine dans les classes sociales défavorisées dans les pays industrialisés, et dans les couches sociales plus élevées dans les pays en voie de développement [1].

L’obésité a été définie en 1998 par l’OMS et l’International Obesity Task Force comme un Index de Masse Corporelle (IMC), correspondant au rapport du poids sur la taille au carré, supérieur à 30. Ces deux organismes classent ainsi l’obésité en plusieurs catégories: une obésité de grade 1 ou modérée pour un IMC compris entre 30 et 34,9 kg/m², une obésité de grade 2 ou sévère pour un IMC entre 35 et 39,9 kg/m², et une obésité de grade 3 ou morbide pour un IMC supérieur à 40 kg/m². [2]

La France n’est pas également épargnée par ce fléau. Après une lente progression entre 1980 et 1991 (prévalence de l’obésité respectivement de 6,1 et 6,5 %), le taux devient alarmant entre 1997 (8,5%) et 2000 (10,1%). Devant cette obésité galopante, une étude épidémiologique régulière s’avère indispensable. D’où depuis 1997, et ce tous les trois ans, une étude nationale sur l’incidence et la prévalence de l’obésité intitulée « Obépi » est
effectué par le laboratoire « Roche ». La dernière analyse disponible datant de 2009 inclue 25000 personnes. Il ressort de cette étude, qu’en 2009, 14,5% des français sont obèses. De même, le poids moyen des français a progressé de 3,1 kg en 12 ans, tandis que la taille moyenne a progressé de 0,5 cm, soit une augmentation de l’IMC moyen de 1kg/m². L’augmentation de l’obésité en France est donc de 0,5% par an [5].

L’obésité est donc un vrai problème de santé publique, d’autant plus qu’elle fait le lit des multiples pathologies. Par exemple, au niveau respiratoire sont décrits le syndrome hypoventilation-hypercapnie et une plus grande proportion de syndromes d’apnées obstructives du sommeil (SAOS). Au niveau cardiovasculaire, l’hypertension artérielle et l’insuffisance cardiaque sont également plus fréquents. Au niveau endocrinien, les patients obèses ont plus de risques de développer un diabète de type 2 et une hypercholestérolémie [6].

Ce fléau intéresse le réanimateur car l’augmentation de sa fréquence dans la population générale va inéluctablement induire une augmentation du nombre de patients obèses admis au sein des services de réanimation. Il n’existe pas actuellement de données sur leur prévalence en France. Néanmoins, les données de la littérature retiennent notre attention: en 2009, environ 25% des patients hospitalisés en unités de réanimation aux Etats Unis étaient obèses [7]. En Allemagne en 2011, 20% des patients de réanimation avaient un IMC supérieur à 30 [8]. Cette forte proportion inquiète le réanimateur, car il est soumis dans la prise en charge de ces patients à des contraintes liées au morphotype (abords vasculaires, dosage des médicaments, nursing, transport intra-hospitalier, imagerie, …), et à l’impact négatif des comorbidités associées (respiratoire, cardiovasculaire, métabolique). Le facteur « obésité » augmente-t-il la morbi-mortalité de ces patients en réanimation ? Une méta-analyse réalisée en 2008 [9] ne retrouvait pas de différence significative en terme de mortalité entre la
population obèse et non obèse, mais par contre une augmentation de la durée de séjour et de la durée de ventilation mécanique chez les patients obèses. On ne peut donc pas conclure avec certitude sur l’influence de l’obésité sur le pronostic.

Notre service de réanimation médico-chirurgicale du Centre hospitalier (CH) de Roubaix était confronté également à cette augmentation importante de la fréquence de patients obèses en son sein, subjectivement depuis 2006. De plus, nous avions l’impression que la morbi-mortalité de ces patients était plus élevée par rapport à la population non obèse.

Nous avons donc effectué une étude rétrospective de 2006 à 2010 pour évaluer nos pratiques de prise en charge des patients obèses dans notre service. Notre objectif principal était d’identifier des facteurs de mauvais pronostic au sein de cette population obèse. Pour cela, nous nous sommes intéressés à la mortalité au cours des 28 premiers jours de leur hospitalisation et à leur taux de mortalité globale.

Le second objectif de notre travail a été de déterminer l’impact du facteur « obésité en réanimation » sur la qualité des soins du personnel soignant ou tout simplement le retentissement des contraintes physico-psychiques de la prise en charge du patient obèse en réanimation.

Le but final de ce travail s’inscrit dans une dynamique d’amélioration de nos pratiques quotidiennes en optimisant la prise en charge de ces patients.
MATERIEL ET METHODE
I/ L’étude

a/ Type d’étude

Il s’agit d’une étude observationnelle monocentrique rétrospective s’étendant sur une période allant du 1er Janvier 2006 au 31 Décembre 2010, recensant tous les patients identifiés comme obèses admis dans le service de réanimation médico-chirurgicale du Centre Hospitalier de Roubaix (25 lits).

b/ Critères d’inclusion

- Age supérieur à 18 ans

- Hospitalisation en réanimation médico-chirurgicale du centre hospitalier Victor Provo à Roubaix

- Présence du diagnostic associé « obésité » dans la base de données du centre hospitalier Victor Provo de Roubaix
c/ Critères d’exclusion

- Index de Masse Corporelle inférieur à 25 kg/m²

- Absence de poids et/ou d’index de masse corporelle notifié dans le dossier du patient

II/ Population étudiée :

a/ Sélection des patients

Le listing des patients obèses a été établi à partir de la base de données mise en place au Centre Hospitalier de Roubaix, et suivant la Classification Internationale des Maladies et des problèmes de santé 10ème révision connu sous le nom de CIM 10 (OMS Genève 1993). Les codes suivants étaient utilisés :

- Obésité sans précision : E66.9

- Obésité extrême avec hypoventilation alvéolaire < 40 kg/m² : E6620

- Obésité extrême avec hypoventilation alvéolaire ≥ 40 kg/m²: E6621

- Obésité extrême avec hypoventilation alvéolaire ≥ 50 kg/m²: E6622

- Obésité sans précision < 40 kg/m²: E6690
• Obésité sans précision ≥ 40 kg/m²: E6691

• Obésité sans précision ≥ 50 kg/m²: E6692

b/ Le recueil de données

L’examen des dossiers cliniques et infirmiers a permis de recueillir les données suivantes :

i/ Les caractéristiques clinico-démographiques

- L’âge
- Le sexe
- Le poids (kilogramme ou kg)
- L’IMC (kg/m²)
- L’IGS II [Annexe 1]
- Les comorbidités préexistantes : cardiaques, respiratoires, métaboliques, consommation de tabac.
- Le motif d’hospitalisation : cause infectieuse, respiratoire, surveillance post opératoire, autres regroupant des causes cardiologicals, neurologiques et toxicologiques
- La durée de séjour en réanimation et à l’hôpital

ii/ Les complications survenues au cours du séjour

- Défaillance cardio-vasculaire nécessitant un remplissage vasculaire et/ou la mise en route de catécholamines
- Défaillance respiratoire nécessitant ou non la mise en route d’une ventilation mécanique
- Pathologie infectieuse quelle que soit son origine et la durée d’une éventuelle antibiothérapie
- Escarres
- Iatrogénie (complication de cathétérisme veineux central)
- Complication veineuse thromboembolique
- Le décès : taux de mortalité globale et cours des 28 premiers jours du séjour en réanimation
iii/ La ventilation au cours du séjour

- Le type de ventilation : spontanée avec ou sans apport d’oxygène, mécanique non invasive au masque ou invasive sur sonde d’intubation ou trachéotomie

- Le mode ventilatoire en cas de ventilation mécanique :

 o Ventilation spontanée avec aide inspiratoire (VSAI)

 o Ventilation à deux niveaux de pression (BIPAP)

 o Ventilation contrôlée (VAC)

- La durée de ventilation

iv/ L’alimentation durant l’hospitalisation

- Le type de nutrition : nutrition orale physiologique (NOP), nutrition entérale exclusive (NEE), nutrition parentérale exclusive (NPE) ou mixte (NM).

- Le délai de mise en route de la nutrition.

- Les complications de la nutrition se limitant à l’hyperglycémie et à la nécessité de la mise en route d’une insulinothérapie.
III/ Recueil du retentissement des contraintes physico-psychiques
de la prise en charge du patient obèse en réanimation :

a/ Retentissement sur le personnel

Dans un second temps nous avons effectué une enquête subjective anonyme du ressenti de la prise en charge des patients obèses auprès du personnel soignant (médical et paramédical) de la réanimation médico-chirurgicale.
b/ Recensement du matériel disponible

Nous avons comptabilisé le matériel mis à disposition du personnel soignant pour la prise en charge des patients obèses dans le service de réanimation médico-chirurgicale et dans l’hôpital. Ont ainsi été référencés le nombre de lits, de fauteuil, de lève-malades, de draps de glisse et autre matériel disponibles.

c/ Formation du personnel

Au sein du centre hospitalier Victor Provo de Roubaix, une formation obligatoire de manutention est mise en place pour le personnel soignant depuis une vingtaine d’années. Grâce au service formation de l’hôpital, nous avons pu obtenir la liste du personnel de réanimation, ayant bénéficié de cette formation au cours des années 2006 à 2010.
IV/ Analyse statistique

Dans un second temps, une analyse statistique bivariée, basée sur la recherche d’une relation entre les paramètres recueillis et le décès, a été réalisée. La recherche de facteurs prédictifs de mortalité chez les patients obèses a été faite par le test du Chi2 ou le test exact de Fisher en cas d’effectif insuffisant (n<5) pour les variables qualitatives, et le test non paramétrique de Wilcoxon pour les variables quantitatives.

Les variables ayant un seuil de significativité inférieur à 20% (p<0,2) ont été introduites dans un modèle de COX multivarié par régression logistique pas à pas afin de déterminer des facteurs indépendants de mortalité.

Une p-value inférieure à 0,05 signait un lien significatif.
RESULTATS
I/ Description de la population étudiée

a/ Analyse globale

De 2006 à 2010, 177 patients hospitalisés en Réanimation médicoc chirurgicale au sein du centre hospitalier Victor Provo de Roubaix ont été identifiés comme obèses ou en surpoids (IMC > 25 kg/m²), soit 4,5% (n=177/3859) de l’ensemble des 3859 patients hospitalisés durant cette période.

En 2006, parmi les 871 patients hospitalisés, 37 étaient obèses, soit 4,2% (n=37/871). En 2007, ce taux de prévalence était de 5,7% (n=47/822), de 3,6% (n=28/768) en 2008, et de 4% (n=29/724) en 2009. Enfin en 2010, ce taux s’élevait de nouveau à 5,3% (n=36/674).

<table>
<thead>
<tr>
<th>Année</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients obèses</td>
<td>37</td>
<td>47</td>
<td>28</td>
<td>29</td>
<td>36</td>
<td>177</td>
</tr>
<tr>
<td>Population totale en réanimation</td>
<td>871</td>
<td>822</td>
<td>768</td>
<td>724</td>
<td>674</td>
<td>3859</td>
</tr>
<tr>
<td>Taux de prévalence</td>
<td>4,2%</td>
<td>5,7%</td>
<td>3,6%</td>
<td>4%</td>
<td>5,3%</td>
<td>4,5%</td>
</tr>
</tbody>
</table>

Tableau 1. Effectifs des patients obèses en réanimation
Parmi les 177 dossiers identifiés, 19 n’ont pas pu être mis à disposition par le service des archives de l’hôpital de Roubaix (dossiers perdus, patients hospitalisés, dossiers retenus pour d’autres études ou en attente de compte-rendu…). N’ont pu être analysés que 158/177 dossiers, soit 89%.

Dans 81/158 dossiers, il manquait la taille, le poids et/ou l’IMC; ils ont donc été exclus. Au final, ne restait incluables que 77 dossiers correspondant à 77 patients (43,5%, n=77/177).

Le taux d’inclusion pour chaque année était celui-ci:

- 35,1% en 2006 (n=13/37)
- 38,2% en 2007 (n=18/47)
- 35,7% en 2008 (n=10/28)
- 48,2% en 2009 (n=14/29)
- 61,1% en 2010 (n=22/36)

b/ Caractéristiques clinico-démographiques

i/ L’âge

L’âge moyen dans notre étude est de 61,17 ans +/- 12,77 (extrêmes 24-86).
ii/ Le sexe

On retrouve parmi ces 77 patients, 44 femmes (57 %) et 33 hommes (43 %), soit un sexe ratio femme/homme à 1,33.

iii/ L’index de Masse Corporelle et le poids

Le poids moyen dans notre étude était de 119,69 kg +/- 26,16 (extrêmes 70-200).

L’IMC moyen était de 42,01 kg/m² +/- 8,56 (extrêmes 27-73). Il est à noter que 63 patients sur 77, soit 81,8%, avaient un IMC supérieur à 35 kg/m². Parmi ces 63 patients, 13 soit 20,6% (n=13/63) sont décédés.

iv/ Le score IGS II

Dans notre étude l’IGS II moyen était de 41,23 +/- 20,14 (extrêmes 7-106).

v/ Le motif d’hospitalisation

Nous avons retenu pour cette étude 4 motifs d’hospitalisation principaux :
- Causes infectieuses
- Causes respiratoires
- Surveillance post opératoire (chirurgie programmée ou urgente)
- Autres (cardiologiques, neurologiques, toxicologiques)

Ont ainsi été hospitalisés 25 patients (32,5 %, n=25/77) pour des raisons respiratoires, 22 patients (28,6 %, n=22/77) pour des problèmes infectieux, 19 patients (24,7 %, n=19/77) en surveillance postopératoire et 11 patients (14,3 %, n=11/77) pour d’autres motifs (cardiologiques, neurologiques ou toxicologiques).

Figure 1. Motifs d’hospitalisation en réanimation

Nous constatons que 28% (n=7/25) des patients hospitalisés pour des causes respiratoires sont décédés, soit 50% (7/14) de la totalité des décès.
Un patient sur cinq hospitalisé pour une cause infectieuse est décédé (18,2%, n=4/22); ce qui représente un tiers des décès (28,6%, n=4/14).

Il est néanmoins à noter qu’aucun patient admis en surveillance postopératoire de chirurgie programmée ou urgente n’est décédé.

vi/ Les comorbidités

Nous avons relevé, dans cette étude, différentes comorbidités dont souffraient les patients hospitalisés dans le service:

- Tabagisme
- Insuffisance respiratoire (restrictive ou obstructive)
- Diabète
- Insuffisance coronarienne
- Insuffisance cardiaque quelle qu’en soit l’origine

Nous avons donc retrouvé 20 patients (26 %, n=20/77) tabagiques, 38 patients (49,3 %, n=38/77) insuffisants respiratoires, 39 patients (50,6 %, n=39/77) diabétiques, 17 patients (22,1 %, n=17/77) insuffisants coronariens et 22 patients (28,6 %, n=22/77) insuffisants cardiaques.
c/ L’alimentation

i/ Le type de nutrition

Le type de nutrition n’était pas indiqué dans 16 dossiers soit 20,8% des cas (n=16/77). Chez les 61 patients restant, quatre types de nutritions différentes ont été retrouvés :

- Nutrition orale physiologique (NOP)
- Nutrition entérale exclusive (NEE)
- Nutrition parentérale exclusive (NPE)
- Nutrition mixte entérale et parentérale (NM)
Nous avons noté une NOP chez 28 patients (45,9%, n=28/61), une NEE chez 8 patients (13,1%, n=8/61), une NPE chez 15 patients (24,6%, n=15/61) et une NM chez 10 patients (16,4%, n=10/61).

Figure 3. Type de nutrition administrée en réanimation

ii/ La mise en route de l’alimentation

La mise en route de l’alimentation n’était pas notifiée pour 16 patients. Chez les 61 patients restant, la nutrition a été débutée entre le premier et le dixième jour.

L’alimentation a été mise en route à J1 pour 27 patients (44,3%, n=27/61), à J2 pour 15 patients (24,6%, n=15/61), à J3 pour 8 patients (13,1%, n=8/61), à J4 pour 7 patients (11,5%, n=7/61), à J5 pour 2 patients (3,3%, n=2/61), à J9 pour 1 patient (1,6%, n=1/61) et à J10 pour 1 patient.
Figure 4. Délai de mise en route de l’alimentation

iii/ Les complications de l’alimentation

Nous avons considéré, comme complication de l’alimentation, l’hyperglycémie apparue suite à la mise en route de la nutrition. Comme précédemment, l’information n’a pu être retrouvée pour 16 patients. Parmi les 61 patients restant, 36 (59%, n=36/61) ont présenté une hyperglycémie.
iv/ L’insulinothérapie

Il n’y avait que 74 dossiers exploitables. Parmi ces patients, 56,8% (n=42/74) ont bénéficié d’un traitement par insuline.

d/ La ventilation

i/ Le type de ventilation

Dans notre étude, 58 patients (75,3%, n=58/77) ont nécessité une assistance respiratoire. Une ventilation non invasive (VNI) a été mise en route chez 17 patients (22,1%, n=17/77), et 41 patients (53,2%, n=41/77) ont bénéficié d’une ventilation mécanique invasive. Enfin 19 patients (24,7%, n=19/77) sont restés en ventilation spontanée sous oxygénothérapie simple.
Parmi les 58 patients ayant bénéficié d’une assistance ventilatoire, 17 (29,3%, n=17/58) étaient en VNI et 41 (70,7%, n=41/58) en ventilation assistée contrôlée (VAC). Le mode ventilatoire utilisé en VNI était la VSAI pour 13 patients (22,4%, n=13/58) et la BIPAP pour 4 patients (6,9%, n=4/58).

ii/ Le mode ventilatoire
La durée moyenne de ventilation mécanique assistée était de 10,22 jours +/- 16,18 (extrêmes 1-95).
e/ Le devenir des patients

i/ Les complications

Nous avons relevé dans cette étude, six types de complications différentes :

- Infectieuses
- Respiratoires
- Cardio-vasculaires
- Veineuses thromboemboliques
- Escarres
- Iatrogènes

Les complications respiratoires identifiées étaient des pneumothorax, des pneumopathies acquises sous ventilation mécanique (PAVM), des œdèmes pulmonaires ou des épanchements pleuraux. Les complications cardiovasculaires ont été retenues quand le recours à un remplissage vasculaire ou aux amines vasopressives fut nécessaire. Enfin la iatrogénie se caractérisait exclusivement par des difficultés liées à la pose des voies veineuses profondes (échec, hématome post ponction artérielle, pneumothorax).

Les complications survenues en réanimation étaient infectieuses dans 59,7% des cas (n=46/77), respiratoires dans 54,5% des cas (n=42/77), cardio-vasculaires dans 35% des cas
(n=27/77), thromboemboliques dans 6,5% des cas (n=5/77), iatrogènes dans 5,2% des cas (n=4/77). Des escarres ont été retrouvés chez 13 patients (17,1%, n=13/76), l’information étant manquante pour un patient.

![Figure 7. Les complications survenues en réanimation](image)

ii/ La durée d’hospitalisation

La durée moyenne de séjour en réanimation était de 10,81 jours +/- 16,03 (extrêmes 1-112).

La durée moyenne d’hospitalisation totale était de 24,71 jours +/- 30,58 (extrêmes 1-217).

Au 28ème jour d’hospitalisation, 9 patients (11,7%, n=9/77) étaient décédés, 37 patients (48%, n=37/77) étaient rentrés à leur domicile, 24 patients (31,1%, n=24/77) étaient toujours hospitalisés dans un service conventionnel et 7 patients (9,1%, n=7/77) ont vu leur durée de
séjour en réanimation dépasser les 28 jours.

iii/ Analyse des décès

Le taux de mortalité globale de toute la population des patients obèses recensée de 2006 à 2010, toute durée de séjour à l’hôpital confondue, aurait été de 19.2% (n=34/177), si l’on avait considéré tous les décès survenus durant la période d’étude.

Mais compte tenu des nombreuses exclusions, nous n’avons pu inclure que 77 patients. Le nombre des patients décédés était de 14 sur 77, soit un taux de mortalité de 18,2%.

Parmi ces 14 patients, 9 patients sur 77, soit 11,7%, étaient décédés au 28ᵉ jour, soit 2 décès sur 3. Et sur ces 9 patients, 7 sont morts en réanimation, soit 9,1% de la population générale, (n=7/77).
Parmi ces 14 patients, 10 sont décédés dans le service de réanimation (71,4%, n=10/14) ; les quatre autres étant décédés dans un service conventionnel après leur sortie de réanimation.

Figure 8. Les décès

DC en hospi : décès en hospitalisation/ DC en réa : décès en réanimation
Les différentes causes de décès sont recensées dans ce tableau:

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (ans)</th>
<th>BMI</th>
<th>IGS II</th>
<th>Jour de décès (J)</th>
<th>Cause de décès</th>
<th>Durée de séjour en réanimation (J)</th>
<th>Lieu de décès</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67</td>
<td>45</td>
<td>29</td>
<td>20</td>
<td>ACR (arrêt cardiorespiratoire) hypoxique sur insuffisance respiratoire terminale</td>
<td>6</td>
<td>hôpital</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>37</td>
<td>94</td>
<td>15</td>
<td>Troubles de rythme sur endocardite infectieuse</td>
<td>15</td>
<td>réanimation</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>57</td>
<td>54</td>
<td>30</td>
<td>Défaillance multi viscérale sur intoxication à la metformine</td>
<td>30</td>
<td>réanimation</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>47</td>
<td>106</td>
<td>1</td>
<td>Choc toxi infectieux (choc TI) réfractaire sur érysipèle</td>
<td>1</td>
<td>réanimation</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>32</td>
<td>70</td>
<td>2</td>
<td>Choc TI sur périctonite stercorale</td>
<td>2</td>
<td>réanimation</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
<td>49</td>
<td>76</td>
<td>1</td>
<td>SDRA (syndrome de détresse respiratoire aiguë) sur ACR hypoxique sur fausse route</td>
<td>1</td>
<td>réanimation</td>
</tr>
<tr>
<td>7</td>
<td>76</td>
<td>42</td>
<td>77</td>
<td>21</td>
<td>Accident vasculaire cérébral (AVC) ischémique massif</td>
<td>13</td>
<td>hôpital</td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>39</td>
<td>77</td>
<td>32</td>
<td>Choc TI sur angiocholite</td>
<td>13</td>
<td>hôpital</td>
</tr>
<tr>
<td>9</td>
<td>65</td>
<td>73</td>
<td>36</td>
<td>14</td>
<td>Choc TI réfractaire sur bactériémie</td>
<td>14</td>
<td>réanimation</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>53</td>
<td>35</td>
<td>13</td>
<td>SDRA sur choc TI sur pneumonie infiltrative</td>
<td>13</td>
<td>réanimation</td>
</tr>
<tr>
<td>11</td>
<td>77</td>
<td>40</td>
<td>37</td>
<td>36</td>
<td>Détresse respiratoire aiguë sur Insuffisance respiratoire terminale</td>
<td>36</td>
<td>réanimation</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>53</td>
<td>54</td>
<td>112</td>
<td>Pneumopathie acquise sous ventilation mécanique (PAVM)</td>
<td>112</td>
<td>réanimation</td>
</tr>
<tr>
<td>13</td>
<td>56</td>
<td>46</td>
<td>69</td>
<td>63</td>
<td>Choc TI avec défaillance multi viscérale sur pneumopathie nosocomiale</td>
<td>35</td>
<td>hôpital</td>
</tr>
<tr>
<td>14</td>
<td>56</td>
<td>38</td>
<td>79</td>
<td>1</td>
<td>Choc cardio-génique réfractaire sur intoxication aux bêtas bloquants.</td>
<td>1</td>
<td>réanimation</td>
</tr>
</tbody>
</table>

Tableau 2. Les causes de décès
Les causes de décès étaient donc en résumé:

- **Infectieuse sur choc TI** dans 57,14% des cas (8/14) [1 pneumopathie nosocomiale, 1 PAVM, 1 bactériémie, 1 endocardite, 1 érysipèle, 1 péritonite, 1 angiocholite, 1 pneumonie infiltrative diffuse].

- **Respiratoire par ACR** dans 21,43% des cas (3/14) [2 insuffisances respiratoires terminales, 1 fausse route].

- **Syndrome de défaillance multi viscérale d’origine toxique** dans 14,29% des cas (2/14) [1 intoxication à la metformine et 1 intoxication aux bêta bloquants].

- **Neurologique** dans 7,14% des cas (1/14) [1 AVC ischémique massif].
<table>
<thead>
<tr>
<th>Patient</th>
<th>n = 77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (ans)</td>
<td>61,17 (+/- 12,77)</td>
</tr>
<tr>
<td>Sexe</td>
<td></td>
</tr>
<tr>
<td>Hommes</td>
<td>43% (n=33/77)</td>
</tr>
<tr>
<td>Femmes</td>
<td>57% (n=44/77)</td>
</tr>
<tr>
<td>IGS II</td>
<td>41,23 (+/- 20,14)</td>
</tr>
<tr>
<td>IMC</td>
<td>42,01 (+/- 8,56)</td>
</tr>
<tr>
<td>Motif d'hospitalisation</td>
<td></td>
</tr>
<tr>
<td>Respiratoire</td>
<td>32,4% (n=25/77)</td>
</tr>
<tr>
<td>Infectieux</td>
<td>28,6% (n=22/77)</td>
</tr>
<tr>
<td>Post-opératoire</td>
<td>24,7% (n=19/77)</td>
</tr>
<tr>
<td>Autre</td>
<td>14,3% (n=11/77)</td>
</tr>
<tr>
<td>Comorbidités</td>
<td></td>
</tr>
<tr>
<td>Tabagisme</td>
<td>26% (n=20/77)</td>
</tr>
<tr>
<td>Insuffisance respiratoire</td>
<td>49,3% (n=38/77)</td>
</tr>
<tr>
<td>Diabète</td>
<td>50,6% (n=39/77)</td>
</tr>
<tr>
<td>Insuffisance coronarienne</td>
<td>22,1% (n=17/77)</td>
</tr>
<tr>
<td>Insuffisance cardiaque</td>
<td>28,6% (n=22/77)</td>
</tr>
<tr>
<td>Alimentation</td>
<td></td>
</tr>
<tr>
<td>Orale Physiologique</td>
<td>45,9% (n=28/61)</td>
</tr>
<tr>
<td>Entérale exclusive</td>
<td>13,1% (n=8/61)</td>
</tr>
<tr>
<td>Parentérale exclusive</td>
<td>24,6% (n=15/61)</td>
</tr>
<tr>
<td>Mixte</td>
<td>16,4% (n=10/61)</td>
</tr>
<tr>
<td>Durée de ventilation (jours)</td>
<td>10,22 (+/- 16,18)</td>
</tr>
<tr>
<td>Complications</td>
<td></td>
</tr>
<tr>
<td>Respiratoires</td>
<td>54,5% (n=42/77)</td>
</tr>
<tr>
<td>Infectieuses</td>
<td>59,7% (n=46/77)</td>
</tr>
<tr>
<td>Cardiovasculaires</td>
<td>35% (n=27/77)</td>
</tr>
<tr>
<td>Thromboemboliques</td>
<td>6,5% (n=5/77)</td>
</tr>
<tr>
<td>Iatrogènes</td>
<td>5,2% (n=4/77)</td>
</tr>
<tr>
<td>Escarres</td>
<td>17,1% (n=13/77)</td>
</tr>
<tr>
<td>Durée de séjour (jours)</td>
<td>10,81 (+/- 16,03)</td>
</tr>
<tr>
<td>Décès</td>
<td></td>
</tr>
<tr>
<td>J28</td>
<td>11,7% (n=9/77)</td>
</tr>
<tr>
<td>Global</td>
<td>18,2% (n=14/77)</td>
</tr>
</tbody>
</table>

Tableau 3. Caractéristiques de la population obèse globale en réanimation
II/ Identification de facteurs prédictifs de mortalité

Nous avons cherché à identifier les facteurs favorisant la mortalité des patients obèses hospitalisés dans notre service de réanimation médico-chirurgicale, en recherchant un lien de corrélation entre chaque variable et le décès.

a/ L’index de masse corporelle

Bien que dans l’étude 13 patients décédés sur 14 aient un IMC supérieur à 35 kg/m² (92,9%, n=13/14), ce facteur n’apparaissait pas comme significatif (p=0,44).

b/ Le motif d’hospitalisation

Parmi les 4 groupes de motifs d’hospitalisation (respiratoire, infectieuse, surveillance post opératoire et autres), le motif d’admission « respiratoire » avait une influence significative sur la mortalité (p=0,0459).
c/ Les comorbidités

i/ Tabagisme

Vingt patients sur 77 étaient fumeurs ; et parmi ces 20 patients, 3 sont morts, soit 15%.

Ce facteur n’avait pas de lien significatif avec la mortalité (p=1).

ii/ Insuffisance respiratoire

Parmi les 14 patients décédés dans notre étude, 8 souffraient d’une insuffisance respiratoire chronique (57,1%, n=8/14). Néanmoins, seuls 21% de patients présentant une insuffisance respiratoire chronique sont décédés (n=8/38).

Il n’existait pas de lien significatif avec le décès (p=0,57).
iii/ Diabète

Un patient diabétique sur cinq est décédé dans notre étude (23,1%, n=9/39). Ce qui correspond à 64,3% des décès (n=9/14). Ce paramètre n’était pas lié significativement au décès (p=0,37).

iv/ Insuffisance coronarienne

Parmi les 14 patients décédés, 2 étaient atteints de coronaropathie (14,3%, n=2/14), soit 11,8% de la population coronarienne, (n=2/17). Ce paramètre n’influait pas significativement sur la mortalité (p=0,72).

v/ Insuffisance cardiaque

Un insuffisant cardiaque sur cinq, (22,7%, n=5/22), est décédé. Ceci correspond à 1/3 des décès soit 35,7% (n=5/14).

La présence d’une insuffisance cardiaque préexistante n’avait pas de lien significatif avec le décès (p=0,52).
d/ L’alimentation

i/ Le type de nutrition

Le type d’alimentation apparaissait comme significatif pour la nutrition mixte avec un p à 0,0048; même s’il y avait 16 données manquantes pour ce paramètre, dont 4 dans la population décédée.

ii/ Insulinothérapie

L’insulinothérapie, qui concernait 9 patients décédés sur 14, soit 21,4% de la population ayant bénéficié de cette thérapeutique (n=9/42), n’avait pas de lien significatif avec la mortalité (p=0,56).
e/ La ventilation

i/ Le type de ventilation

Un tiers des patients bénéficiant de la ventilation mécanique invasive sont décédés (31,7%, n=13/41). Cela correspondait à 92,9% des décès (n=13/14). Et un patient a bénéficié d’une assistance respiratoire non invasive

Le recours à la ventilation mécanique invasive apparaissait comme un paramètre significatif de mortalité (p=0,0028).

ii/ Le mode ventilatoire

Parmi les 58 patients ayant bénéficié d’une assistance respiratoire, l’information sur le mode ventilatoire était manquante pour 4 d’entre eux (6,9%, n=4/58), dont un des patients décédés.

Parmi les 13 patients décédés ayant bénéficié d’une ventilation mécanique invasive, 12 étaient en VAC (92,3%, n=12/13), et un en VSAI.

Il est à noter qu’aucun des patients ventilés en BIPAP n’est décédé. L’effectif total de patients ventilés en BIPAP étant inférieur à 8, aucune analyse statistique n’a pu être effectuée.

Donc il n’a pas été possible d’établir une corrélation entre le mode ventilatoire et la mortalité.
iii/ La durée de ventilation

Concernant la durée de ventilation, l’effectif des patients ayant bénéficié d’une assistance respiratoire (n=58) était trop faible pour effectuer une analyse statistique sur la durée moyenne de ventilation. Nous avons donc étudié la durée médiane de ventilation.

La durée médiane de ventilation des patients décédés était de 12,5 jours (extrêmes 1–95) versus 4 jours chez les non décédés (extrêmes 1-62).

Le test de Wilcoxon a révélé une tendance (p=0,061): les patients décédés ont une durée de ventilation plus longue.

f/ La durée d’antibiothérapie

De la même façon que pour la durée de ventilation, l’effectif total des patients étaient insuffisant pour effectuer une analyse statistique sur la durée moyenne d’antibiothérapie. Nous nous sommes donc intéressés à la durée médiane.

Au total, 74 patients ont bénéficié d’un traitement antibiotique au cours de leur séjour en réanimation. Les 14 patients décédés de notre étude ont tous reçu une antibiothérapie durant leur hospitalisation. La durée médiane d’antibiothérapie chez les patients décédés était de 7 jours (extrêmes 0–49), et identique à celle des patients non décédés 7 jours (extrêmes 0–52).

Il n’existait pas de lien significatif avec la mortalité quel que soit la durée de l’antibiothérapie au test de Wilcoxon (p=0,14).
g/ Les complications

i/ Complications infectieuses

Un tiers des patients ayant eu une complication infectieuse sont décédés (28,3%, n=13/46). Cela correspondait à 92,9% des décès (n=13/14).

Compte tenu du petit effectif de patients décédés sans complication infectieuse, un test de Fisher a été effectué. Il met en évidence un lien significatif entre la survenue d’un problème infectieux et le décès (p=0,0058).

ii/ Complications respiratoires

Tous les patients décédés avaient une complication respiratoire. Ce qui représentait un tiers des patients ayant eu une complication respiratoire (33,3%, n=14/42).

Ce paramètre influait donc significativement sur la mortalité (p=6,6.10⁻⁵).
iii/ Complications cardio-vasculaires

Deux patients sur cinq ayant présenté des complications cardiovasculaires sont décédés (40,7%, n=11/27) soit les 3/4 des patients décédés (78,6%, n=11/14).

Il existait donc une corrélation significative entre la survenue de complications cardio-vasculaires et le décès (p=3,31.10^{-4}).

iv/ Escarres

L’information était manquante pour l’un des patients décédés. Six patients décédés sur 13 ont eu moins une escarre (46,1%, n=6/13). Et parmi ces patients, atteints d’au moins une escarre, 46,1% (n=6/13) sont décédés.

Un test de Fisher, réalisé, retrouve une corrélation significative entre le décès et la survenue d’une escarre (p=0,007).

v/ Iatrogénie

Le nombre patients décédés ayant eu une complication iatrogène étant faible (14,3%, n=2/14), aucun test statistique n’a pu être effectué. Néanmoins, il est à noter que 50% des patients ayant eu une complication iatrogène sont décédés (n=2/4).
Complications thromboemboliques

Le nombre patients décédés ayant eu une complication thromboembolique étant faible (14,3%, n=2/14), aucun test statistique n’a pu être également effectué. Néanmoins, il est à noter que 40% des patients décédés avaient une complication thromboembolique (n=2/5).

Résumé de l’analyse bivariée

Parmi tous les paramètres analysés dans notre étude, ceux qui ont une influence significative (p<0,05) sur la survenue du décès en réanimation des patients obèses sont les suivants :

- Le motif d’hospitalisation respiratoire (p=0,0459)
- L’alimentation mixte entérale et parentérale (p=0,0048)
- La ventilation mécanique invasive (p=0,0028)
- Les complications respiratoires (p=6,6.10^{-5}).
- Les complications infectieuses (p=0,0058)
- Les complications cardiovasculaires (p=3,31.10^{-4}).
- La survenue d’escarres (p=0,007)

On note néanmoins une tendance à la mortalité chez ceux qui ont bénéficié d’une longue durée de ventilation mécanique (p= 0,061).
III/ Identification de facteurs indépendants de mortalité

Dans un premier temps, nous avons référencé toutes les variables influençant significativement la mortalité en analyse bivariée: les complications infectieuses, respiratoires, cardiovasculaires et les escarres, le type de nutrition, le type de ventilation et le motif d’hospitalisation.

Toutes les variables, dont au moins un élément était égal à zéro ou pour lesquelles le taux de données manquantes était trop important, n’ont pas pu être retenues pour l’analyse multivariée. Les complications respiratoires, le type de ventilation et le motif d’hospitalisation ont donc été exclus du fait d’un effectif nul, tandis que le type de nutrition a été exclu du fait d’un taux de données manquantes de 21%.

Un modèle de régression logistique a ensuite été appliqué aux variables retenues (complication infectieuses, cardiovasculaires et escarres). Ce dernier a permis d’identifier les complications cardio-vasculaires et les escarres comme des facteurs prédictifs de décès (p=0,0044 et p=0,0219 respectivement). Les complications infectieuses ayant un p à 0,3210.

Enfin ces deux variables identifiées ont bénéficié d’un nouveau modèle de régression logistique afin de déterminer l’Odds Ratio de chacune.

L’Odds Ratio pour les complications cardiovasculaires est de 20,6 avec un intervalle de confiance à 95% compris entre [3,35 et 126,69]. L’Odds Ratio pour les complications d’escarres est de 9,93 avec un intervalle de confiance à 95% compris entre [1,68 et 58,68].
Donc en analyse multivariée deux paramètres apparaissent comme ayant une influence sur la mortalité en réanimation des patients obèses dans notre service de façon significative (p<0,2): les complications cardio-vasculaires et les escarres.

IV/ Retentissement des contraintes physico-psychiques

a/ Retentissement sur le personnel

i/ Déclarations d’accident de travail

Les accidents de travail (AT), déclarés selon le rapport anonymisé de la médecine du travail, ont permis d’identifier différents types de pathologies, les lésions constatées et le personnel concerné entre 2006 et 2010.

Les pathologies identifiées sont :

- Les syndromes dépressifs ou « burn-out »

- Les pathologies traumatiques (efforts de soulèvement, mobilisation de personne)
Les accidents de trajets, les traumatismes liés à des chutes et les accidents d’exposition au sang ou à des liquides biologiques n’ont pas été retenus.

![Figure 9] Accidents de travail déclarés selon les années

Nous constatons qu’un tiers, (36%, n=9/25), des accidents de travail sont survenus en 2007 et que la totalité des accidents déclarés cette année-là étaient des accidents traumatiques.

Devant l’effectif déclaré d’accidents du travail et d’arrêt maladie trop faible, aucune analyse statistique n’est réalisable pour mettre en évidence une corrélation entre le nombre d’accident
de travail par année et le taux de patients obèses dans le service. Néanmoins, en observant, le pourcentage d’accidents de travail déclarés et le pourcentage des patients obèses par année, il semblerait qu’il puisse exister une corrélation entre la prévalence de patients obèses présents dans le service et l’incidence d’accident de travail déclarés.

Figure 10. Incidence d’accidents de travail selon la prévalence de patients obèses

Il est à noter également que ce sont les aides-soignants qui constituent la catégorie professionnelle la plus concernée par les accidents de travail. Il y avait 17 aides-soignants, 7 infirmiers et 1 étudiant ambulancier.
Les lésions observées étaient essentiellement des traumatismes rachidiens (83,3%, n=20/24), de type cervical (n=3), dorsal (n=6) ou lombaire (n=11) ; les autres types de lésions étant 4 entorses.

Figure 11. Incidence d’accidents de travail par catégorie professionnelle
IDE : Infirmier(e) diplômé(e) d’état AS : Aide-soignant(e) diplômé(e) d’état CCA : étudiant ambulancier
Figure 12. Lésions traumatiques constatées lors d’accidents de travail

ii/ Enquête subjective anonyme du personnel

Nous avons demandé, de façon anonyme et subjective en juillet 2012, à l’ensemble du personnel de la réanimation médico-chirurgicale du centre hospitalier Victor Provo de Roubaix, leur ressenti vis-à-vis de la prise en charge du patient obèse au sein du service. Le personnel se compose de 88 personnes se répartissant de la façon suivant:

- 9 médecins réanimateurs
- 48 infirmiers diplômés d’état dont 2 cadres de santé
- 31 aides-soignants diplômés d’état
Parmi les 9 médecins interrogés, 7 ont répondu à cette enquête (77,8%). Nous constatons que 86% des médecins réanimateurs (6/7) ayant répondu à cette enquête jugent le matériel inadapté (taille des lits, tensiomètres, chemises d’hôpital, housse du lève malade) à la prise en charge du patient obèse. Une difficulté accrue lors de la réalisation des gestes techniques (pose de voies veineuses centrales, intubation orotrachéale) et une stigmatisation de cette population par l’ensemble du personnel étaient signalés par 71% (5/7) d’entre eux. Un défaut de formation théorique vis-à-vis des spécificités de cette population au cours de leur cursus était noté par 57% d’entre eux (4/7). Des transports plus risqués, un personnel affecté à ces patients insuffisant ainsi que des difficultés d’adaptation posologique étaient retrouvés chez 43% des médecins interrogés (3/7). Enfin, 29% des médecins ayant répondu à cette enquête (2/7) jugent la réalisation des examens cliniques et paracliniques plus
difficiles à mettre en œuvre et constatent une plus grande difficulté lors de la ventilation mécanique.

Figure 14. Ressenti des IDE sur la prise en charge des obèses

Parmi les 48 IDE et Cadres de santé interrogés, 21 ont répondu à l’enquête (43,7%). Le matériel inadapté (lits, fauteuils, tensiomètres…) (71,4% ; 15/21), les difficultés de nursing (76,2% ; 16/21) et l’insuffisance de matériel spécifique à l’obèse (61,9% ; 13/21) sont les trois réponses revenant le plus fréquemment. On constate ensuite que 47,6% (10/21) des IDE ayant répondu signalent une plus grande difficulté dans la réalisation des gestes techniques (voie veineuse périphérique, prélèvement artériel, sondage urinaire), et jugent que les soins du patient obèse sont plus pourvoyeurs d’accidents traumatiques (dorsalgies…). Un personnel alloué à la prise en charge de ces patients insuffisant est ressenti par 33,3% des IDE ayant
répondu à l’enquête (7/21). Des transports plus risqués sont constatés par 28,6% (6/21) d’entre elles et 14,3% (3/21) constatent un défaut de sécurité des patients.

![Diagram](image)

Figure 15. Ressenti des AS sur la prise en charge des obèses

Neuf AS sur les 31 du service ont répondu à cette enquête (29%). La totalité des AS ayant répondu jugent le matériel inadapté (lits, fauteuils, tensiomètres, chemises, lève-malade) et le matériel spécifique à l’obèse (lit bariatrique, fauteuil pour obèses) insuffisant et 88,9% d’entre eux (8/9) estiment que le personnel est insuffisant pour prendre en charge ces patients. Parmi les AS ayant répondu, 77,8% (7/9) jugent les soins de nursing plus compliqués à réaliser chez ces patients. Enfin, 66,7% (6/9) signalent un plus grand nombre d’accidents de travail lors de la prise en charge de ces patients.
b/ Recensement du matériel disponible

Au sein des deux unités (médicale et chirurgicale) qui composent le service de réanimation médocochirurgicale (25 lits) du centre hospitalier Victor Provo de Roubaix, un seul fauteuil pour obèse est disponible, ainsi qu’une couverture de transfert type Easy Slide®, un Roll-Board®.

De même un seul lève malade est disponible pour les deux secteurs (poids maximum : 300 kg), équipé de 3 harnais. Théoriquement, le service peut disposer d’un panel de 18 harnais et de 2 lève-malades supportant respectivement 300 et 500 kg. Ce matériel de prêt, conservé à l’atelier bio-medical, se trouve depuis plusieurs mois dans d’autres services de l’hôpital.

Concernant les lits pour obèses, un seul lit est disponible pour l’ensemble de l’hôpital, ce lit étant prioritairement entreposé dans le service de réanimation. Il est à noter que depuis peu dans le service de traumatologie, deux chambres sont munies de rail au plafond pour faciliter la mobilisation des patients obèses à l’aide d’un lève-malade sur rail.

Jusqu’en 2009, pour les 25 lits, dans la politique de prévention des escarres, on utilisait 4 à 5 matelas mousse et 4 à 5 matelas à eau. Devant leur efficacité insuffisante, le service a acquis, en 2009, 2 matelas à air pulsé (Nimbus®, Autologic®), et pouvait louer au cas par cas des matelas supplémentaires jusqu’en 2011.
c/ Formation du personnel

Figure 16. Personnel soignant formé par année au sein du CH de Roubaix.

(Effectif de 2012 arrêté au 07.08)

Nous pouvons donc constater que seulement 14,2% du personnel soignant de tout le centre
hospitalier de Roubaix a été formé sur ces six dernières années (438/3087). Selon les années, le taux du personnel formé s’échelonne entre 1,3 et 3,1% (entre 39 et 95 personnes par an). Le nombre de personnes formées annuellement est toujours en deçà du nombre de places disponibles (120 à 140 par an), même lors de l’année de 2009, où il y a eu un pic de formation (95 personnes formées).
DISCUSSION
La première remarque concerne la puissance de notre étude, avec donc un risque de biais dans les résultats. En effet, elle est faible par rapport au nombre des dossiers recensés dans la base de données de l’hôpital de Roubaix. Comme dans la plupart d’études rétrospectives, l’exploitation des dossiers a été marquée par un grand nombre de données manquantes telles que la taille, le poids et/ou l’IMC. Ce taux était de 51.2% versus un taux variant jusqu’à 35% dans la littérature [17]. Ceci s’explique essentiellement par le fait que l’estimation du poids et de la taille était en général visuelle dans notre service, souvent par défaut de matériel pour mesurer ou peser le patient. Cependant cela différerait pour les patients devant être opérés, car ils avaient bénéficié d’une consultation pré-anesthésique, d’où la notification dans leur dossier du poids et de la taille.

Or Bloomfield et son équipe ont montré que cette estimation visuelle altérait la qualité de la prise en charge des patients obèses en réanimation. En 2006, Bloomfield mettait en évidence, dans une étude prospective de 44 patients au sein d’un service de réanimation, qu’une estimation visuelle du poids et de la taille, par un panel de 20 personnes, induisait une erreur de 20% par rapport au poids réel dans 19% des cas et une erreur de 10% par rapport au poids réel dans 47% des cas. L’estimation de la taille était quant à elle erronée de 10% dans la majorité des cas. Ces erreurs entraînaient par ailleurs une inadéquation des posologies des thérapeutiques mises en routes, car les traitements instaurés lors du séjour en réanimation peuvent varier selon la valeur du poids (remplissage, œdèmes, déplétion, dénutrition….) [10]. Il s’avère donc important de pouvoir peser les patients de façon régulière et répétitive.

Donc, afin d’améliorer la prise en charge des patients obèses hospitalisés dans notre service, il nous fallait tout d’abord pouvoir identifier précisément cette population. Il s’avérait donc nécessaire de pouvoir mesurer le poids et la taille de tous les patients hospitalisés dans le service de réanimation, et de bien transcrire ces mesures de façon visible et lisible dans le
dossier.

Les solutions concrètes s’offrant à nous étaient l’acquisition d’un lève - malade équipé d’un peson. Il a été acquis en juillet 2008, le pic de déclaration d’accidents de travail de 2007 aidant. En effet l’augmentation de l’admission des patients obèses dans le service avait induit beaucoup d’efforts de soulèvement traumatiques, rendant indispensable un lève - malade. Cette acquisition a permis d’identifier exactement les patients obèses, d’où l’amélioration des inclusions dans notre étude entre 2006 et 2010 (35,1% en 2006 versus 61,1% en 2010). Néanmoins, un seul lève – malade équipé de 3 housses est disponible pour les 25 patients du service. Ce qui limite son utilisation, notamment quand il y a des isolements pour des bactéries multi résistantes. Donc la dotation en housses supplémentaires, dont le prix unitaire se situe entre 80 et 100 euros, apparaît comme une solution raisonnable pour permettre une pesée systématique des patients admis dans notre service.

En ce qui concerne l’évaluation de la taille, nous n’utilisons actuellement aucun moyen de mesure ou d’estimation chez nos patients alités, et présentant fréquemment des troubles de conscience. Pourtant il existe différents moyens d’évaluation de la taille :

- Soit par la mesure segmentaire du tibia (mesure à l’aide d’un pied à coulisse, chez un patient alité, genou et cheville fléchis à 90°, entre la malléole interne et le bord supérieur de la rotule) [Annexe 2],

- Soit par la mesure de la demi-envergure d’un bras (mesure avec un mètre-ruban, bras tendu à 90°, entre l’extrémité du majeur et la jonction sterno-claviculaire contro-latérale) [Annexe 3].

Ces mesures permettent ensuite grâce à des abaques d’estimer la taille du patient [11]. Ce sont des moyens de mesure simples et pratiques. De plus, l’investissement dans un pied à coulisse
paraît alors dérisoire (entre 70 et 120 euros), si on le compare au coût de prise en charge d’un accident de travail. Par exemple, on peut citer le cas d’une infirmière, qui a été en soins pour un accident de travail de février 2009 à mai 2011 suite à une déchirure musculaire au niveau de l’articulation scapulohumérale, et qui est déclarée en affection longue durée depuis mai 2011 sans reprise de travail possible pour le moment.

Donc une mesure réelle du poids et de la taille, par ces moyens simples et pratiques, nous permettra de cibler notre population obèse afin d’en optimiser la prise en charge globale et de diminuer l’incidence des accidents traumatiques, et donc des accidents de travail, pourvoyeurs d’arrêts-maladie et parfois des soins longs et coûteux.

Sur les cinq années concernées par notre étude, la prévalence de la population obèse ou en surpoids dans le service de réanimation médico-chirurgicale de l’hôpital Victor Provost de Roubaix était de 4,5%. Il n’existe malheureusement que très peu d’études s’étant intéressées à la prévalence de cette population au sein des services de réanimation ou de soins intensifs. Néanmoins, une étude américaine de 2009 signalait qu’un quart des patients hospitalisés en réanimation aux États-Unis étaient obèses [7]. La différence de prévalence entre notre étude et l’étude américaine peut s’expliquer par la différence de prévalence de personnes obèses dans la population générale entre les États-Unis et la France (35% versus 14,5%) [4,5]. De plus le taux de patients obèses dans notre étude est nettement inférieur au taux de personnes obèses dans la population française (4,5% vs 14,5%), tout en suivant néanmoins la même courbe de progression de 0,5% par an dans la population générale française versus 0,3% par an dans notre étude entre 2006 et 2010 (4,2% versus 5,3%). D’autre part l’augmentation du taux d’inclusion de 2006 à 2010 est le reflet de la sensibilisation du corps soignant au phénomène « obésité en réanimation ». Ce taux reste aussi inférieur à celui décrit dans les services de réanimation en Allemagne [5]. En 2011, un article allemand relevait une
prévalence de près de 20% de patients obèses dans les services de réanimation en Allemagne [8]. Cette faible prévalence peut être due au caractère rétrospectif de notre étude avec une perte d’information sur les données permettant de définir l’obésité, ou à une absence de codage du diagnostic secondaire « Obésité (E66…) » lors du codage CIM 10. Néanmoins comparativement à la région Nord Pas de Calais, région la plus touchée de France, dont fait partie notre hôpital, même si elle reste inférieure à la prévalence régionale, on note une marge de progression parallèle, puisque cette prévalence était estimée en 2006 à 18,1%, et en 2009 à 20,5% dans notre région, soit 11,7% d’augmentation [5] versus 20,7% dans notre étude (4,2 % en 2006 et 5,3% en 2010). Donc notre service est amené à admettre encore plus des patients obèses en son sein si ce raz de marée continue.

Ceci est d’autant plus important, qu’on aurait pu penser qu’un IMC supérieur à 35 kg/m² apparaîtrait comme un facteur prédictif de mortalité. En effet nous avions choisi ce seuil, car l’étude de l’équipe de Bercault [13] montrait qu’un IMC supérieur à 30 kg/m² était un facteur indépendant de mortalité. Ce n’était pas le cas dans notre étude. Ceci correspond aux données de la littérature, puisqu’il existe une hétérogénéité des études quant à l’influence de l’obésité quel soit son IMC sur la morbi-mortalité en réanimation. En effet, la méta-analyse réalisée en 2008 par Akinnusi et son équipe ne mettait pas en évidence de surmortalité liée à l’obésité en réanimation, mais incriminait par contre un allongement de la durée de séjour en réanimation et la durée de la ventilation mécanique [9]. Certaines études retrouvaient l’obésité comme un facteur de mauvais pronostic [12-15], tandis que d’autres attribuaient à l’obésité un effet protecteur [16-19]. Il est à noter que la définition de l’obésité variait selon les études ainsi que la population étudiée (population générale ou population uniquement de patients ventilés).
Le tableau 10 résume ces études :

<table>
<thead>
<tr>
<th>Année</th>
<th>Auteurs</th>
<th>Type</th>
<th>IMC > 30, facteur indépendant de décès</th>
<th>Mortalité plus élevée en soins intensifs si IMC > 40</th>
<th>IMC > 27, facteur indépendant de décès</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>El Sohl [12]</td>
<td>Rétrospectif</td>
<td>30</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Tremblay [17]</td>
<td>A partir d'un registre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Garrouste-Orgeat [18]</td>
<td>A partir d'un registre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Gounelok [14]</td>
<td>Prospective sur un an</td>
<td>27</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cette hétérogénéité des résultats pousse à s’interroger sur l’effet « protecteur » de l’obésité. Certaines équipes l’expliquent par la sécrétion en période de stress par le tissu adipeux d’adipokines (leptine, adiponectine, apeline, HGF, interleukine 10, résistine), dont certaines auraient des propriétés immunologiques. En effet, il a été montré chez des patients ayant un
sepsis sévère, un taux de leptine plus élevé chez les survivants [20]. D’autres équipes attribuent cet effet protecteur à des taux sanguins élevés de cholestérol et surtout de HDL-cholestérol. En effet dans une étude prospective chez des patients traités pour un sepsis grave, un taux bas de HDL-cholestérol à l’admission en réanimation augmentait la durée de séjour en réanimation, la fréquence des infections, la mortalité globale et la mortalité attribuée aux infections. L’explication était soit une atténuation de la production de TNF alpha induite par la présence de LPS ou soit par le rôle du HDL-cholestérol en tant que précurseur de la biosynthèse des stéroïdes en réanimation [21].

Donc plus que de se focaliser sur l’IMC des patients obèses, il serait intéressant dans une étude prospective de doser systématiquement à l’admission en réanimation le cholestérol, l’HDL-cholestérol, certaines adipokines telles que la leptine ou l’interleukine 10, et de déterminer si leur taux sanguin influence la mortalité en fonction de l’IMC, calculé selon la définition de l’OMS.

L’obésité étant souvent associée à plusieurs comorbidités et génératrice de plusieurs complications, nous nous sommes intéressés aux différentes causes de décès en réanimation, bien que peu d’études les aient évaluées. Une seule étude américaine, rétrospective sur 25 ans, retrouve une majorité de décès dans la population générale pour des complications cardiovasculaires lorsque l’IMC était supérieur à 30 kg/m² [22].

Les comorbidités interviennent-elles comme facteur de mauvais pronostic dans notre étude ? Même si l’insuffisance respiratoire chronique n’apparaît pas comme un facteur significatif, nous avons pu constater que 57% des patients décédés souffraient d’insuffisance respiratoire chronique, et qu’il existait une tendance à l’allongement de la durée de ventilation mécanique chez ces mêmes patients. Ceci pourrait s’expliquer par la pathologie respiratoire du patient.
obèse. La diminution du volume pulmonaire, la diminution de la compliance pulmonaire, l’altération du rapport ventilation-perfusion ainsi que la réduction de l’efficacité des muscles respiratoires seraient responsables du syndrome « hypoventilation obésité », qui pourrait expliquer cette prolongation de la durée de ventilation chez ces patients [23]. Pour les ventiler moins longtemps, il faudrait donc les ventiler mieux. Un volume courant de 8ml/kg basé sur le poids idéal théorique \(\text{PIT} = X + 0,91(\text{taille en cm} - 152,4) \) (\(X = 50 \) chez l’homme et 45,5 chez la femme), une fréquence respiratoire de 14 à 16 cycles par minute associés à une pression expiratoire positive (PEP) de 10 mmHg sont actuellement préconisés pour la ventilation du patient obèse [24]. Par ailleurs, si on se base sur le poids actuel lorsque l’IMC est supérieur à 40 kg/m², l’augmentation des résistances pulmonaires fait que le patient reçoit un volume courant deux fois plus bas (5ml/kg), ce qui entraîne un risque d’atélectasies, donc d’hypoxie, d’incrémentation de la sédation et de la curarisation, le prolongement de la ventilation mécanique et donc le risque de survenue de PAVM. Il convient donc de tenir compte du terrain du patient pour adapter les réglages de la ventilation mécanique [24].

La durée médiane de ventilation dans notre étude était plus longue dans la population décédée, 12,5 jours (extrêmes 1-95) versus 4 jours chez les vivants. La littérature n’a malheureusement pas comparé la durée de ventilation mécanique et la survie au sein de la population obèse. Néanmoins, la méta analyse de 2008 d’Akinussi et son équipe a comparé la durée de ventilation entre la population obèse et non obèse, et a retrouvé un allongement de la durée moyenne de ventilation chez les patients obèses (9,2 jours vs 7 jours, \(p=0,04 \)) [9].

Compte tenu du fait que la ventilation mécanique invasive (VM) était retrouvée comme un facteur prédictif de mortalité, et qu’il existait une tendance à la mortalité à cause de l’allongement de la durée de ventilation mécanique dans notre étude, il aurait été intéressant
de déterminer si cela aurait pu être attribué à un réglage inadéquat des paramètres ventilatoires. Mais malheureusement, nous ne les avons pas relevés. Il n’empêche que nous devrons veiller de façon encore plus systématique à ce que les patients obèses soient ventilés dans le respect des recommandations pour améliorer leur pronostic.

De plus, afin d’optimiser le succès de l’extubation du patient obèse, nous pourrions appliquer une VNI en relais. Puisqu’il a été démontré que le recours à la ventilation non invasive pendant les 48 premières heures suivant l’extubation permettrait une réduction significative de la durée de séjour en réanimation et de la durée globale d’hospitalisation, en évitant un échec d’extubation [25].

Cependant la meilleure attitude serait d’anticiper le recours à la ventilation mécanique en préconisant une VNI précoce dès qu’il y a une acidose respiratoire. D’autant plus qu’il ressort de différentes études, que l’obésité augmente le risque d’intubation difficile et de stridor avec des incidences allant jusqu’à 15,5% [26]. Le recours à des techniques complémentaires (mandrin long béquillé d’Eschmann, lames droites, lame de Mc Coy, masque laryngé type FastTrach®, laryngoscopie vidéo-assistée type Airtraq®, kit de mini-trachéotomie……) s’avère nécessaire quand sont associés une classe de Mallampati III ou IV, une circonférence de cou supérieure à 45,6 cm et un syndrome d’apnées du sommeil. Il est également important d’assurer une surélévation de la tête, du cou et des épaules pour une meilleure visualisation glottique [27]. Donc la VNI doit être privilégiée au maximum. En effet, il a été décrit que les patients souffrant du syndrome « hypoventilation obésité » était plus fréquemment atteints de syndrome d’apnées obstructives du sommeil (SAOS) [28], et que le risque de décompensation respiratoire hypercapnique était accru en cas d’obésité et de SAOS [29]. La VNI est bien décrite dans le traitement des décompensations respiratoires hypercapniques et comme traitement de fond du SAOS [30, 31], avec chez le patient obèse, des niveaux de Pression
Expiratoire Positive plus élevés et une durée d’application de la VNI plus longue que chez le non obèse pour atteindre des niveaux de PaCO2 inférieurs à 50 mmHg [32-34].

L’autre comorbidité fréquente dans notre étude était le diabète; on le retrouvait chez les 2/3 de notre population obèse décédée. Or ce facteur, bien que non prédicatif de mortalité dans notre étude, a été identifié comme une cause de décès chez les patients dont l’IMC est supérieur à 25 kg/m² [22]. En effet il induit un état d’immunodépression, qui favorise la survenu de pathologies infectieuses, pouvant alors grever le pronostic de ces patients. Une prise en charge agressive et précoce des désordres glycémiques s’avère donc nécessaire comme chez tous les autres patients de réanimation [35, 36].

Nous avons également noté qu’un patient souffrant d’insuffisance cardiaque chronique sur cinq est décédé, ce qui représente dans notre étude un tiers des décès. La pathologie cardiaque du patient obèse est elle aussi bien décrite; elle génère souvent une hypertrophie ventriculaire gauche et droite proportionnelle au poids, une plus grande prévalence d’hypertension artérielle systémique, de troubles du rythme [37] et de syndromes métaboliques [38]. Bien que la proportion de cette comorbidité soit conséquente, elle n’apparaît pas, comme dans la littérature, comme un facteur prédicatif significatif.

En ce qui concerne les comorbidités, il faut donc veiller à la ventilation du patient obèse en insuffisance respiratoire restrictive sévère, à son équilibre glycémique et aux facteurs de décompensation cardiaque de façon à diminuer leur mortalité. D’autant plus que dans notre étude 50% des patients décédés étaient admis pour un motif respiratoire; ce motif aigu se surajoutant et aggravant probablement le tableau chronique. Ce facteur est à prendre en compte lors de la prise en charge du patient, car il influait sur la mortalité de façon significative, même si on ne retrouve aucune donnée à ce sujet dans la littérature. Il en est de même lorsque le motif d’hospitalisation était infectieux, puisque ça représente 20% des
patients hospitalisés pour des pathologies infectieuses, soit un tiers des décès dans notre étude.

L’alimentation du patient obèse en réanimation influence-t-elle le pronostic ?

Dans notre travail, la combinaison de la nutrition entérale et de la nutrition parentérale apparaissait comme un facteur prédictif de mortalité (p=0,0048). Or le support nutritionnel du patient agressé a fait l’objet de nombreuses études, s’intéressant de plus en plus ces dernières années, à la prise en charge nutritionnelle du patient obèse en unité de soins intensifs ou réanimation. Il est en effet constaté que le risque de dénutrition est identique chez le patient obèse et le patient non obèse [39]. Par ailleurs, l’insulinorésistance constitutionnelle liée à l’obésité, l’insulinorésistance liée à l’agression, l’augmentation de la dépense énergétique et l’hypercatabolisme en réponse au stress favorisent la dénutrition. Cette dernière étant décrite comme un facteur indépendant de morbi-mortalité en réanimation [18, 40]. Compte tenu des résultats obtenus dans notre étude, on pourrait conclure que l’association de la nutrition entérale et parentérale est délétère; car elle potentialise l’hyperglycémie induite par la nutrition parentérale par apport excessif en glucose, (d’où aggravation de la morbi-mortalité par une augmentation des complications infectieuses, des polyneuropathies acquises en réanimation et une perte squelettique majeure), et l’hypertriglycéridémie fréquente chez l’obèse pouvant être majorée en période de stress, de nutrition artificielle et d’apports caloriques trop importants. Il convient donc de rajouter à notre pratique habituelle d’insulinothérapie intensive, une surveillance de la triglycéridémie de façon à mieux réguler l’apport lipidique de nos patients obèses (inférieur à 1g/kg de poids ajusté par jour) [39].

Les données de la littérature proposent désormais certains axes pour l’alimentation des
patients obèses. Chez les patients dont l’IMC est normal (entre 18 et 25 kg/m²), les apports énergétiques sont calculés sur le poids actuel [41]. Malheureusement, l’obésité pose quelques difficultés de calculs des apports nutritionnels. Le poids réel (PR) expose au risque de surestimation des apports, tandis que le poids idéal (PI) risque de sous-estimer ces apports ; sans compter que l’hyperinflation hydrique, souvent présente en réanimation, altère encore cette estimation du poids. Ces dernières années est apparue la notion de poids ajusté (PA) prenant en compte le poids idéal plus 25% de la masse maigre [PA = PI + 0,25 x (PR – PI)] [42]. L’attitude nutritionnelle préconisée, pour l’alimentation du patient obèse en réanimation, est actuellement une alimentation entérale hypocalorique hyperprotidique (11 à 14 kcal/kg/j et 2 g/kg/j de protides en se basant sur le poids idéal ou 1,3 g/kg/j de protides en se basant sur le poids ajusté), bien qu’aucune étude prospective randomisée avec ce type de nutrition ne soit disponible à ce jour [43-45].

Les données de la littérature montrent que le délai de mise en route de l’alimentation chez les patients obèses et non-obèses est identique. Il est actuellement recommandé, pour les patients de réanimation, de privilégier la nutrition entérale dès que cela est possible, et de débuter l’alimentation au cours des 24 à 48 premières heures suivant l’admission [46-48]. Ce qui correspond à nos pratiques puisque 68,9 % des patients étaient alimentés dans les 48 premières heures, et que 59% des patients avaient une alimentation entérale (NOP, NEE), 16,4% une alimentation mixte et 24,6% une alimentation parentérale.

Dans la littérature, il est décrit comme complications fréquentes chez le patient obèse, les risques thromboemboliques, les complications pulmonaires telles que des atélectasies, des pneumopathies nosocomiales, des infections notamment sur cathéter [49]. Les complications retrouvées chez nos patients sont intriquées, et constituent toutes des facteurs prédictifs de
mortalité. Ce sont principalement des complications respiratoires de type infectieux. Ces complications étaient essentiellement des pneumopathies, notamment des pneumopathies acquises sous ventilation mécanique (PAVM). Cela nous pousse donc à nous interroger sur l’application du protocole d’établissement sur les mesures de prévention des PAVM au sein de notre population obèse. Était-ce difficile de mettre en œuvre certaines mesures dans notre service : absence de lit adapté pour maintenir une surélévation de la tête du lit supérieure à 35°, difficulté d’avoir des liens « fixes-sondes » efficaces compte-tenu du morphotype de ces patients et de la macroglossie fréquente? Probablement parce qu’il manquait le matériel adapté. Il faudrait également, comme nous l’avons vu précédemment, s’efforcer de réduire les durées de sédation, de ventilation mécanique et privilégier les aspirations sus glottiques. En effet la survenue des PAVM est connue comme un facteur augmentant la durée de séjour en réanimation et favorisant la mortalité [50]. Cela nous conforte dans le fait qu’il faut avoir recours le moins possible à la ventilation mécanique chez le patient obèse.

Il est également à noter dans notre étude que lorsqu’un patient obèse présentait une complication infectieuse, le décès survenait dans 30% des cas. Cette gravité pourrait s’expliquer par des modifications immunologiques décrites dans plusieurs études. Craft et Reed, en 2010, retrouvaient que l’obésité en réanimation était associée à un risque plus élevé de complications infectieuses, probablement dû à une activation chronique de cytokines pro-inflammatoires [51]. De même Vachharajani décrit une exagération de la réponse inflammatoire au niveau de la microcirculation cérébrale chez l’obèse, qui pourrait expliquer l’augmentation de la morbi-mortalité, en cas de sepsis [52, 53].

Toutes ces complications prolongent la durée de séjour du patient en réanimation et donc augmentent le risque de survenue d’escarres. Car il existe chez l’obèse, une diminution de la vascularisation du tissu adipeux, l’exposant à une grande fréquence d’escarres et d’ulcères de
pression. En effet, dans notre étude, la survenue d’escarres était de 17%. Ce facteur est important car il apparaissait comme un facteur indépendant de mortalité, d’autant plus qu’à lui seul, il était susceptible d’augmenter la durée d’hospitalisation globale du patient. Notre service a dû parer de façon plus efficace à la prévention d’escarres, car on utilisait jusqu’en 2009 des matelas mousses, peu efficaces, ou des matelas à eau tiède, efficaces mais source d’infections par la stagnation de l’eau et/ou d’hypothermie quand l’eau se refroidissait. Nous avons acquis en 2009 des matelas à réduction de pression avec des dispositifs à air fluidifié et faible perte d’air (de type Nimbus® (Nimbus 3 et 4) et AUTOLOGIC 200®), permettant une meilleure prévention [54]. Mais notre service en avait seulement deux à disposition permanente pour 25 lits, avec la possibilité d’en louer au cas par cas. Cela semblait évidemment insuffisant compte tenu de la prévalence des escarres, d’où la mise en place systématique depuis janvier 2012 d’une location adaptée aux besoins réels. Cependant, il importe de choisir un matériel adapté à au morphotype des patients obèses, car certains membres de l’équipe soulignent ces points : matelas trop étroit, difficulté de maintien de la pression d’air du fait du poids du malade. Ces mesures doivent être associées à l’acquisition de lits bariatriques de façon à faciliter les soins de nursing et de positionnement des patients.

Cet alitement prolongé favorise également la survenue de complications thromboemboliques, d’autant plus que l’obésité est décrite comme un facteur indépendant de survenue de thromboses veineuses, augmentant le risque d’un facteur 2,33 [55, 56]. Mais nous notons qu’il n’y a eu que 5 complications thromboemboliques dans notre étude, du fait peut être de la prévention médicamenteuse et le port des bas de contention.

Nous avons néanmoins été surpris par le faible nombre de complications iatrogènes dans cette étude (seulement 4 événements décrits), compte-tenu de la difficulté, fréquemment décrite chez ces patients, pour la pose de voies veineuses profondes. Le recours quasi systématique à
l’échographie pour la cathétérisation des axes veineux profonds pourrait expliquer ces résultats [57-60].

On s’intéresse généralement au ressenti du patient obèse pour sa prise en charge hospitalière, mais pratiquement jamais au ressenti du personnel soignant, d’où l’absence de données dans la littérature. Nous nous sommes donc intéressés au personnel soignant car son ressenti permettrait d’améliorer la prise en charge globale du patient obèse à l’hôpital et notamment en réanimation.

Pour cela, nous avons tout d’abord recensé les accidents de travail. Nous avons ainsi pu constater qu’un tiers des accidents de travail, déclarés au cours des cinq années de notre étude, étaient survenus en 2007, année correspondant également au pic de prévalence des admissions des patients obèses dans notre service (5,7%). Cette année fut marquée par une surcharge de travail pour le personnel soignant, qui même s’il était en effectif recommandé selon les sociétés savantes (1 IDE pour 2,5 patients et 1 AS pour 4 patients), a dû faire face à un nombre croissant de patients obèses dans le service associé à des mesures draconiennes pour une épidémie à bactéries multi résistantes. Cela a généré une fatigue accumulée par des efforts de soulèvement accrus alors que leurs jours de repos étaient amputés, d’où un « burn-out », responsable d’une augmentation du nombre des traumatismes, et donc d’accidents de travail déclarés.

Face à ce nombre croissant d’accidents de travail, nous avons voulu avoir le ressenti subjectif des soignants face à la prise en charge des patients obèses. La population des AS était la plus touchée par les AT traumatiques. Ils dénonçaient le défaut de personnel, le manque d’outils de travail adaptés à l’obèse, tels qu’un seul lit bariatrique pour tout l’hôpital, un seul fauteuil
obèse, des tensiomètres non adaptés au morphotype, des chemises d’hôpital ne respectant pas l’intimité des patients… Du fait de ces problèmes de matériel, les soins de nursing sont plus difficiles à prodiguer chez ces patients obèses, et nécessitent souvent l’intervention de 4 ou 5 soignants pour un seul patient, là où les plannings ne prévoient qu’une IDE et une AS pour 3 patients.

En premier lieu, il semble donc impératif d’acquérir en nombre le matériel adapté à ces patients :

- Des lits bariatriques avec possibilité de mettre le patient en position Trendelenburg inversée à 45° pour assurer une meilleure mécanique ventilatoire et éviter les problèmes de compression [61], car un seul dans le service semble insuffisant,

- des couvertures de transfert ou Easy-Slide®,

- des disques pivot pour les transferts et mise au fauteuil, car comme le fait remarquer pertinemment une aide-soignante, il n’est pas possible actuellement de pivoter mécaniquement le bras du lève-malade pour mobiliser le patient du fauteuil au lit et vice versa,

- des draps de rehaussement ou Roll-Board®,

- un deuxième fauteuil obèse

- augmenter notre dotation des harnais pour pouvoir pallier aux isolements pour germes multi résistants

Puisqu’il y a un projet de bâtir un nouveau service de réanimation, il faudrait prévoir des lève-malades sur rail pouvant supporter jusqu’à 300 kg, ainsi qu’une surface suffisante pour
accueillir un lit bariatrique, un fauteuil pour obèse, et permettant de faire des transferts et des soins de nursing dans des bonnes conditions.

En ce qui concerne les IDE, elles avaient la même préoccupation sur l’inadaptation du matériel et le manque de matériel spécifique disponible. Elles introduisaient la notion de « sécurité du patient » que ce soit pour le matériel (exemple : crainte de chute du lit lors des mobilisations) ou pour les gestes techniques. Faut-il songer à développer du matériel plus ergonomique pour faciliter la pose de voies veineuses périphériques ou le sondage vésical, puisque pour l’instant il n’existe pas de solution évidente?

Quant aux médecins, ils déploraient aussi le manque de matériel adapté, la propension aux traumatismes accidentels due à un personnel en nombre insuffisant ainsi que la difficulté de transport hors du service de ces patients pour des examens complémentaires. Ils se sentaient donc désarmés par cette population de patients, d’où leur grande stigmatisation sur leur prise en charge : « les voies veineuses vont être difficiles à poser », « l’intubation sera compliquée voire impossible » « les comorbidités vont compliquer la prise en charge »… Pourtant dans notre étude, on ne notait aucun décès par échec d’intubation, aucune comorbidité n’apparaissait comme un facteur de mortalité, et seulement 4 événements iatrogènes étaient référencés. Bien que toutes les complications présentées par notre population obèse soient significatives statistiquement, il serait intéressant de comparer leur survenue à une population non obèse dans une étude prospective. Et comme le soulignait la majorité des médecins interrogés, il y a un manque crucial de formation du corps médical quant aux spécificités de la population obèse. On pourrait envisager un « module obésité » au cours de la formation universitaire au détriment d’un seul chapitre dans le « module désordres endocriniens » dispensé actuellement aux étudiants.

Le dernier élément à prendre en compte, et non le moindre est d’assurer une augmentation du
nombre de sessions de formation à la prévention des troubles musculo-squelettiques. Il est évident que 2 formateurs pour le centre hospitalier de Roubaix sont insuffisants, puisque sur une période de 6 ans, n’ont pu être formés que 14,2% agents. En effet, ce serait incohérent d’avoir du matériel adapté sans former le personnel sur sa meilleure utilisation et lui apprendre à l’utiliser en préservant son capital musculo-squelettique. L’investissement dans la formation de plusieurs animateurs permettrait indéniablement de réduire les AT et le coût des soins, qui en découlent, les arrêts-maladie, ainsi que le « burn-out ». En effet, plusieurs agents pourraient alors bénéficier de cette formation préventive obligatoire pour améliorer leur qualité de vie et offrir donc une meilleure prise en charge aux patients obèses à l’hôpital et notamment en réanimation. C’est un axe de travail à développer puisque le taux d’obésité ne cesse de croître dans la population française et nord-pas-de-calaisienne.
CONCLUSION
Cette évaluation rétrospective sur la prise en charge des patients obèses en réanimation a souligné, du fait de la grande quantité des données manquantes, l’importance de mesurer systématiquement à l’admission le poids et la taille de ces patients par des moyens simples et pratiques afin d’identifier par un index de masse corporel (IMC) cette population pour optimiser les soins administrés.

Notre étude a révélé comme facteurs prédictifs de mortalité, le motif d’hospitalisation pour cause respiratoire, l’association d’une alimentation entérale et parentérale, la ventilation mécanique invasive, les complications (de type respiratoire, infectieux, cardiovasculaire et d’escarre), et comme facteurs indépendants de mortalité, les escarres et les complications cardiovasculaires. L’IMC, quel que soit sa valeur, ainsi que les comorbidités n’avaient aucune influence sur la mortalité ; on notait néanmoins une tendance significative à la mortalité pour un allongement de la durée de ventilation mécanique.

Il apparaissait également dans cette étude que la courbe d’incidence d’accidents de travail était parallèle à la prévalence de l’obésité dans notre service. Ces accidents étaient principalement traumatiques et touchaient en grande partie les aides-soignants, d’où la réalisation d’une enquête subjective sur le ressenti de l’ensemble du personnel sur leur prise en charge globale.

Il en découlait que l’optimisation de la prise en charge du patient obèse par le personnel soignant doit passer par l’acquisition d’un matériel adéquat spécifique au patient obèse, l’implication de l’hôpital de Roubaix dans la formation d’animateurs en nombre suffisant afin d’assurer une formation préventive obligatoire aux troubles musculo-squelettiques de tout le personnel, la formation universitaire sur les particularités du patient obèse par exemple sur la nutrition, la mécanique ventilatoire, l’adaptation des posologies médicamenteuses.
Toutes ces mesures réduiraient les coûts de prise en charge du patient obèse en réanimation tout en améliorant sa qualité de prise en charge globale, y compris par le corps soignant.

Il serait alors intéressant, afin de bannir toute stigmatisation, de faire une étude prospective de la prise en charge du patient obèse en réanimation en tenant compte des caractéristiques épidémio-cliniques, biologiques (dosage sérique du HDL-cholésterol, des triglycérides, de certaines adipokines), et du retentissement physico-psychique sur le personnel soignant.
ANNEXES
| Variable | 26 | 13 | 12 | 11 | 9 | 7 | 6 | 5 | 4 | 3 | 2 | 0 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 16 | 17 | 18 |
|--------------------------|
| Age |
| Fréquence cardiaque | <40 | |
| P. artérielle systolique | <70 | |
| Température | | <39 | |
| PaO2/FIO2 (si VA) | <100 | 100-199 | ≥200 | |
| Débit urinaire | <0,5 | 0,5-0,9 | ≥1,0 | |
| Urate sanguine | | <10,0 | |
| Leucémie |
| Néphrétique |
| HCO3 sérique | <15 | 15-19 | ≥20 | |
| Bilirubine | | <88 | |
| Glasgow Coma Score | <5 | 6-8 | 9-13 | 14-15 | |
| Affectation chronique | |
| Type d’admission |
| Totaux des colonnes |

Source:

http://www.rxkinetics.com/height_estimate.html

Calculez la taille à l'aide de la formule suivante:

Femmes

Taille en cm = (1.35 x demi-envergure en cm) + 60.1

Hommes

Taille en cm = (1.40 x demi-envergure en cm) + 57.8

Source:

http://www.rxkinetics.com/height_estimate.html
BIBLIOGRAPHIE
3. OMS | Obésité et surpoids [Internet]. http://www.who.int/mediacentre/factsheets/fs311/fr/index.html

Résumé : Evaluation de la prise en charge du patient obèse en réanimation

Contexte : L’obésité pose un véritable problème de santé publique, responsable d’une élévation inéluctable de l’admission des patients obèses en réanimation. Il importait alors d’évaluer les facteurs prédictifs de mortalité en réanimation de ces patients, ainsi que le retentissement physico-psychique de leur prise en charge par l’ensemble du personnel soignant.

Méthodes : Une étude rétrospective observationnelle a été réalisée sur tous les patients obèses admis en réanimation polyvalente de Roubaix de janvier 2006 à décembre 2010.

Résultats : Nous avons recensé 158 dossiers (81 exclusions pour absence d’index de masse corporel ou IMC). Ont été retenus 77 patients, avec une prévalence de l’obésité de 4,5% progressant de 0,3% par an (4,2% en 2006 versus 5,3% en 2010), dont 57% de femmes, d’âge moyen de 61 ± 13, d’IGS II moyen de 41 ± 20, d’IMC moyen de 42 ± 9, avec un diabète dans 50%, une insuffisance respiratoire chronique dans 49%, une pathologie cardiaque chronique dans 50%, une durée de ventilation mécanique de 10,2 ± 16 jours, une durée moyenne de séjour de 10,8 ± 16 jours. Le motif d’hospitalisation était respiratoire dans 32%, infectieux dans 29%, post-opératoire dans 24%. Les complications étaient respiratoires dans 54%, infectieuses dans 60%, cardiovasculaires dans 35%, des escarres dans 17%. L’alimentation était orale dans 46%, parentérale dans 25%, entérale dans 13% et mixte dans 16%. Le taux de mortalité à J28 était de 11,7% (9/77) à J28 et global à 18,2% (14/77). Les principales causes de décès étaient infectieuses dans 57%, et respiratoires dans 21%. En analyse bivariée, avaient une influence significative sur la survenue du décès en réanimation, le motif d’hospitalisation respiratoire (p=0,0459), l’alimentation mixte entérale et parentérale (p=0,0048), la ventilation mécanique invasive (p=0,0028), les complications respiratoires (p=6,6.10^-5), les complications infectieuses (p=0,0058), les complications cardiovasculaires (p=3,31.10^-4), la survenue d’escarres (p=0,007). On notait néanmoins une tendance à la mortalité devant une durée de ventilation mécanique longue (p= 0,061). En analyse multivariée, apparaissaient deux facteurs indépendants de mortalité en réanimation (p<0,2): les complications cardio-vasculaires et les escarres.

Le retentissement des contraintes physico-psychiques induites par l’obésité, a pu être évalué d’une part, par le nombre d’accidents de travail déclarés, (traumatismes ou « burn-out »), touchant principalement les aide-soignants, dont l’incidence évoluait dans le même sens que la prévalence de l’obésité dans le service, et d’autre part, par un recueil du ressenti négatif du personnel, qui incriminait un matériel spécifique inadapté et insuffisant, générant des mauvaises conditions de travail.

Conclusion : Pour diminuer la morbimortalité des patients obèses en réanimation, il faut acquérir un matériel spécifique en nombre suffisant, faire la prévention des troubles musculo-squelettiques auprès du personnel soignant, et une formation théorique sur les spécificités thérapeutiques de l’obésite.